Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 8 x^{15} + 9 x^{13} + 23 x^{12} - 129 x^{11} + 456 x^{10} - 635 x^{9} + 894 x^{8} - 804 x^{7} + 2800 x^{6} - 3456 x^{5} + 9120 x^{4} - 6592 x^{3} + 5760 x^{2} - 1536 x + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-25014102650966116800000000=-\,2^{12}\cdot 3^{18}\cdot 5^{8}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{1}{16} a^{8} - \frac{7}{16} a^{7} - \frac{7}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{1}{8} a^{10} + \frac{1}{32} a^{9} - \frac{7}{32} a^{8} + \frac{9}{32} a^{7} - \frac{7}{16} a^{6} + \frac{1}{32} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{15} + \frac{3}{320} a^{14} - \frac{1}{64} a^{13} - \frac{3}{160} a^{12} + \frac{7}{80} a^{11} + \frac{49}{320} a^{10} - \frac{67}{320} a^{9} + \frac{9}{64} a^{8} - \frac{69}{160} a^{7} - \frac{119}{320} a^{6} + \frac{29}{80} a^{5} + \frac{29}{80} a^{4} + \frac{9}{40} a^{3} - \frac{3}{20} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{30080} a^{16} + \frac{1}{6016} a^{15} - \frac{79}{30080} a^{14} + \frac{7}{940} a^{13} + \frac{43}{940} a^{12} - \frac{523}{6016} a^{11} - \frac{3009}{30080} a^{10} - \frac{809}{30080} a^{9} + \frac{51}{940} a^{8} + \frac{33}{6016} a^{7} + \frac{1939}{15040} a^{6} - \frac{2613}{7520} a^{5} - \frac{731}{1880} a^{4} - \frac{211}{470} a^{3} - \frac{22}{47} a^{2} - \frac{2}{5} a - \frac{116}{235}$, $\frac{1}{81161170291798200958720} a^{17} - \frac{299300619533060529}{81161170291798200958720} a^{16} - \frac{39138126655391704817}{81161170291798200958720} a^{15} - \frac{441190510121988793177}{40580585145899100479360} a^{14} + \frac{51279043281013104997}{4058058514589910047936} a^{13} + \frac{2054657771497691814049}{81161170291798200958720} a^{12} - \frac{4040899475023045259703}{81161170291798200958720} a^{11} + \frac{700099396116523884901}{16232234058359640191744} a^{10} + \frac{13788989525367076268577}{40580585145899100479360} a^{9} + \frac{1524410632412397798337}{81161170291798200958720} a^{8} - \frac{163264369076509531861}{634071642904673444990} a^{7} - \frac{1441881242138568414443}{20290292572949550239680} a^{6} + \frac{283689479724875950823}{10145146286474775119840} a^{5} - \frac{1678390713519445257253}{5072573143237387559920} a^{4} - \frac{202046578194358920673}{507257314323738755992} a^{3} + \frac{400763707787630545473}{1268143285809346889980} a^{2} + \frac{73838361682530570792}{317035821452336722495} a + \frac{150939408613097299864}{317035821452336722495}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 148711.30288280427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.108.1, 6.0.4000752.4, 9.3.787320000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |