Normalized defining polynomial
\( x^{18} - 3 x^{17} + 7 x^{16} - 8 x^{15} + 35 x^{14} - 28 x^{13} + 110 x^{12} - 162 x^{11} + 286 x^{10} - 260 x^{9} + 262 x^{8} - 100 x^{7} + 124 x^{6} - 126 x^{5} + 105 x^{4} - 43 x^{3} + 21 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24930271280154907835063=-\,7^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{6} + \frac{1}{3}$, $\frac{1}{36} a^{14} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{6} a^{9} + \frac{2}{9} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{18} a^{5} - \frac{1}{6} a^{4} - \frac{1}{9} a^{3} + \frac{7}{18} a^{2} + \frac{4}{9} a - \frac{5}{36}$, $\frac{1}{36} a^{15} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{9} - \frac{2}{9} a^{8} - \frac{1}{18} a^{6} - \frac{1}{2} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{5}{18} a^{2} - \frac{17}{36} a - \frac{1}{3}$, $\frac{1}{3516948} a^{16} - \frac{28103}{3516948} a^{15} + \frac{7505}{1758474} a^{14} - \frac{111379}{1758474} a^{13} - \frac{11551}{195386} a^{12} + \frac{69065}{1758474} a^{11} - \frac{2933}{1758474} a^{10} - \frac{14417}{195386} a^{9} + \frac{346771}{1758474} a^{8} + \frac{33217}{586158} a^{7} - \frac{35005}{1758474} a^{6} + \frac{292529}{1758474} a^{5} - \frac{762421}{1758474} a^{4} + \frac{29087}{1758474} a^{3} - \frac{139589}{1172316} a^{2} + \frac{86671}{1172316} a + \frac{134171}{879237}$, $\frac{1}{3516948} a^{17} - \frac{13387}{3516948} a^{15} - \frac{9929}{879237} a^{14} + \frac{15185}{293079} a^{13} - \frac{39620}{879237} a^{12} - \frac{5627}{293079} a^{11} + \frac{46213}{879237} a^{10} - \frac{607}{293079} a^{9} - \frac{155537}{1758474} a^{8} + \frac{282589}{1758474} a^{7} + \frac{255455}{879237} a^{6} + \frac{340909}{879237} a^{5} - \frac{129758}{879237} a^{4} + \frac{1408967}{3516948} a^{3} - \frac{62552}{879237} a^{2} - \frac{1122079}{3516948} a - \frac{391295}{1758474}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2564.16185262 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, \(\Q(\zeta_{7})^+\), 6.0.12167.1, 6.0.29212967.2 x2, 6.0.29212967.1, 9.3.1431435383.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.29212967.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |