Normalized defining polynomial
\( x^{18} - 3 x^{17} + 156 x^{16} - 264 x^{15} + 12207 x^{14} - 15969 x^{13} + 513402 x^{12} - 243291 x^{11} + 11001684 x^{10} - 3913117 x^{9} + 125898486 x^{8} - 44832291 x^{7} + 676780368 x^{6} - 346339797 x^{5} + 2052116871 x^{4} - 843969360 x^{3} + 26131311780 x^{2} - 33061226361 x + 52082479009 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24892779122496057347515050710073813084598272=-\,2^{12}\cdot 3^{31}\cdot 7^{14}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $257.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{63} a^{15} + \frac{1}{63} a^{14} + \frac{1}{21} a^{13} + \frac{1}{21} a^{12} + \frac{1}{63} a^{11} - \frac{1}{21} a^{10} - \frac{10}{63} a^{9} - \frac{1}{21} a^{8} - \frac{2}{21} a^{7} + \frac{4}{63} a^{6} - \frac{5}{63} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{63} a^{2} + \frac{1}{7} a + \frac{29}{63}$, $\frac{1}{19089} a^{16} - \frac{11}{2727} a^{15} + \frac{185}{6363} a^{14} + \frac{95}{2727} a^{13} + \frac{845}{19089} a^{12} - \frac{10}{707} a^{11} - \frac{407}{2727} a^{10} - \frac{98}{2727} a^{9} - \frac{124}{2121} a^{8} - \frac{3014}{19089} a^{7} + \frac{229}{19089} a^{6} + \frac{215}{909} a^{5} - \frac{3016}{19089} a^{4} + \frac{6848}{19089} a^{3} - \frac{60}{707} a^{2} + \frac{8581}{19089} a + \frac{44}{189}$, $\frac{1}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{17} + \frac{5866631328286552475741225390259839763755922806216808047919460475477695423765}{263081942853793809110507451642693729503426680424491142973445690211722387703744409} a^{16} - \frac{12068669613879118364711016547259140316586347140156412642875395596781466006819169}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{15} + \frac{685505302595663445666152412495564441495904687899778341067409767807343924124046}{28652488825660711883322593743263673510274192917518837353543590023058873908328599} a^{14} + \frac{94422386128857442445973198170314549863714456366985416774900729976450578341183875}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{13} + \frac{45395953979485150539019960471673809181896370643772879895910355465747588309774412}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{12} + \frac{11586820771857110737110288185105182157243105473521134981652900596736038616560831}{263081942853793809110507451642693729503426680424491142973445690211722387703744409} a^{11} - \frac{17465324821060574574474586925238119272827077214182491747953672781374818351537653}{413414481627390271459368852581375860648241926381343224672557513189849466391598357} a^{10} - \frac{17499325208641165883800290601463339313175288178284046099438935763042918869642105}{263081942853793809110507451642693729503426680424491142973445690211722387703744409} a^{9} + \frac{408110144302344222141104297464844330819316238331442162241294742826391377288069835}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{8} + \frac{117278474031005743872180511422568312852133925417754795647943767563965509727787549}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{7} - \frac{173829196350483317998344434865858455625157748905056540664381270087367218979009270}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{6} + \frac{116053124288079697644113756304274562162768754380964094278460397408468352264105824}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{5} - \frac{1291958475307833398930532851748659681500796297348254985770584384379202248331274083}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{4} - \frac{1006612376042047664561466025613888828804894647755320380132601636998994468869763014}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{3} - \frac{980883259962435055958378883125221688366275513895406906924486071637560657506256084}{2893901371391731900215581968069631024537693484669402572707902592328946264741188499} a^{2} - \frac{44363430778408505549382516182077743040960794672479080947459722556541687446166582}{413414481627390271459368852581375860648241926381343224672557513189849466391598357} a - \frac{1071194274853441503118458308592866779018792713833604265091929986404538231997868}{2604771711423701080302053976660333955479472083410803395776690002096261264393509}$
Class group and class number
$C_{6}\times C_{6}\times C_{504}\times C_{7560}$, which has order $137168640$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.3.3969.2, 3.3.756.1, 6.0.1152596897487.9, 6.0.41817574512.4, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.12.6.1 | $x^{12} + 146334 x^{6} - 20511149 x^{2} + 5353409889$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |