Normalized defining polynomial
\( x^{18} - 3 x^{17} - 90 x^{16} + 105 x^{15} + 4146 x^{14} + 3969 x^{13} - 66495 x^{12} - 104844 x^{11} + 645948 x^{10} + 1440664 x^{9} - 394080 x^{8} - 17911008 x^{7} + 10282368 x^{6} + 42470400 x^{5} + 17473536 x^{4} + 29097984 x^{3} + 767557632 x^{2} + 905969664 x + 1073741824 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2471908731721405920557482056194302734375=-\,3^{31}\cdot 5^{9}\cdot 7^{12}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $154.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{24} a^{9} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{96} a^{10} + \frac{1}{96} a^{9} - \frac{1}{16} a^{8} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{7}{32} a^{5} + \frac{3}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{12} a + \frac{1}{3}$, $\frac{1}{192} a^{11} - \frac{1}{192} a^{10} - \frac{1}{48} a^{9} + \frac{3}{64} a^{8} - \frac{1}{16} a^{7} - \frac{5}{64} a^{6} - \frac{15}{64} a^{5} - \frac{5}{32} a^{4} + \frac{1}{8} a^{3} - \frac{11}{24} a^{2} - \frac{5}{12} a + \frac{1}{3}$, $\frac{1}{1536} a^{12} - \frac{1}{1536} a^{11} + \frac{1}{384} a^{10} + \frac{17}{1536} a^{9} + \frac{7}{128} a^{8} + \frac{3}{512} a^{7} - \frac{15}{512} a^{6} - \frac{1}{256} a^{5} + \frac{7}{32} a^{4} - \frac{17}{192} a^{3} + \frac{1}{96} a^{2} + \frac{5}{24} a - \frac{1}{3}$, $\frac{1}{3072} a^{13} - \frac{1}{3072} a^{12} + \frac{1}{768} a^{11} - \frac{5}{1024} a^{10} + \frac{13}{768} a^{9} - \frac{61}{1024} a^{8} + \frac{17}{1024} a^{7} - \frac{33}{512} a^{6} + \frac{9}{64} a^{5} - \frac{5}{384} a^{4} - \frac{23}{192} a^{3} + \frac{5}{48} a^{2} + \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{73728} a^{14} - \frac{11}{73728} a^{13} - \frac{1}{36864} a^{12} - \frac{7}{73728} a^{11} - \frac{11}{36864} a^{10} + \frac{305}{73728} a^{9} - \frac{335}{8192} a^{8} - \frac{45}{2048} a^{7} - \frac{33}{2048} a^{6} + \frac{967}{9216} a^{5} + \frac{7}{2304} a^{4} - \frac{191}{2304} a^{3} + \frac{257}{576} a^{2} + \frac{5}{36} a + \frac{2}{9}$, $\frac{1}{36569088} a^{15} + \frac{47}{12189696} a^{14} + \frac{291}{2031616} a^{13} - \frac{6839}{36569088} a^{12} + \frac{13963}{6094848} a^{11} - \frac{59893}{12189696} a^{10} + \frac{3343}{1179648} a^{9} - \frac{52583}{1015808} a^{8} + \frac{15175}{1015808} a^{7} - \frac{388085}{4571136} a^{6} + \frac{87611}{380928} a^{5} - \frac{19391}{126976} a^{4} + \frac{20671}{285696} a^{3} + \frac{1795}{11904} a^{2} + \frac{17}{1488} a - \frac{56}{279}$, $\frac{1}{585105408} a^{16} - \frac{1}{195035136} a^{15} - \frac{17}{3145728} a^{14} - \frac{11159}{585105408} a^{13} - \frac{4429}{97517568} a^{12} + \frac{303403}{195035136} a^{11} - \frac{830399}{585105408} a^{10} - \frac{217889}{48758784} a^{9} - \frac{522473}{16252928} a^{8} - \frac{945293}{73138176} a^{7} + \frac{48503}{6094848} a^{6} + \frac{1510451}{6094848} a^{5} - \frac{1039925}{4571136} a^{4} - \frac{7903}{190464} a^{3} - \frac{3401}{23808} a^{2} - \frac{583}{2232} a + \frac{13}{93}$, $\frac{1}{9161269299690852129368526181976725917567811584} a^{17} - \frac{5019400461211752456308297482932823171}{9161269299690852129368526181976725917567811584} a^{16} - \frac{566982902290179685955660126810909135}{1526878216615142021561421030329454319594635264} a^{15} + \frac{9924723643235758886256920792386764930851}{3053756433230284043122842060658908639189270528} a^{14} - \frac{341385990042712358432600410773319506334759}{4580634649845426064684263090988362958783905792} a^{13} - \frac{1465855022306967213795453617125916375226751}{9161269299690852129368526181976725917567811584} a^{12} + \frac{23802285581332501369872393460196001152448449}{9161269299690852129368526181976725917567811584} a^{11} + \frac{405350274191361649588017872624162161457023}{763439108307571010780710515164727159797317632} a^{10} - \frac{17074087346867764716864785297126525400992177}{2290317324922713032342131545494181479391952896} a^{9} + \frac{1468802203355547139351895287395514449094579}{1145158662461356516171065772747090739695976448} a^{8} - \frac{7313200468383605387743046914990107792961147}{286289665615339129042766443186772684923994112} a^{7} - \frac{10705574595793455525812149903562153396372557}{95429888538446376347588814395590894974664704} a^{6} - \frac{877670521899752135834815659107313374310343}{23857472134611594086897203598897723743666176} a^{5} + \frac{220944315624652540951749513120018089456147}{8946552050479347782586451349586646403874816} a^{4} + \frac{11149817301731186529375510454412536709813}{1118319006309918472823306418698330800484352} a^{3} - \frac{5725426785349112316054273740965708356731}{34947468947184952275728325584322837515136} a^{2} + \frac{32169879376276445123309673448242873253}{364036134866509919538836724836696224116} a - \frac{125643560252742571225934619140692225454}{273027101149882439654127543627522168087}$
Class group and class number
$C_{6}\times C_{6}\times C_{63270}$, which has order $2277720$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 237885673.5279126 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.621.1, 3.3.3969.1, 6.0.144615375.1, 6.0.5907360375.1, 9.9.20539533187176381.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |