Normalized defining polynomial
\( x^{18} - 3 x^{17} - 212 x^{16} + 529 x^{15} + 18943 x^{14} - 36741 x^{13} - 912645 x^{12} + 1241272 x^{11} + 24954124 x^{10} - 19669300 x^{9} - 364735736 x^{8} + 95910807 x^{7} + 2159872996 x^{6} + 270111793 x^{5} + 1281634724 x^{4} + 3880241552 x^{3} + 3052031404 x^{2} + 1641530792 x + 2131673741 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24684604940694766798215200273653100123=-\,109^{12}\cdot 20627^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $109, 20627$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{17} - \frac{583417960013312131140064832667210656441734854152129144155743593270099323708005}{5668252164356039520319567471127627942041242810790819620536016251592544855403596} a^{16} + \frac{6270785242471921436632226843566157953265924118021268940780555949029857896880339}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{15} + \frac{62667817031024126382976418400703483977695309839773619878168626839697087270075}{2094788843348971127074622761068905978580459299640085511937223397327679620475242} a^{14} - \frac{4026370780542239461009595067191711057287925801242689515631571207488279383930909}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{13} - \frac{565889712409570559499942671906635083531298026279914512152413218146087188100263}{5668252164356039520319567471127627942041242810790819620536016251592544855403596} a^{12} - \frac{2635987833855018132557731161370871878852822638687327935777168287214845049253569}{5668252164356039520319567471127627942041242810790819620536016251592544855403596} a^{11} + \frac{2599008226002485066038788994662857159341468873739998292063891764215502358123481}{5668252164356039520319567471127627942041242810790819620536016251592544855403596} a^{10} - \frac{3049389497797238473278946720085321638951058159786138271970858272109298401758589}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{9} + \frac{42679078444674782638227760863873663541811788617799625603493391847202626344670591}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{8} - \frac{13401415721799762056054885184697836161934761220334858768844992986122323578998419}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{7} + \frac{41450605109426390422151078224476972398769614656387942301354718800671391816962137}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{6} - \frac{31471975510407782492289439511088473048217005982687756429660023659279719955821357}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a^{5} + \frac{1096755057511422670926135247019515640551119982438508747853955522297335730924213}{4189577686697942254149245522137811957160918599280171023874446794655359240950484} a^{4} + \frac{21839395897971500001316782928274516614279992501485626229367851147580226841561749}{48180143397026335922716323504584837507350563891721966774556138138536631270930566} a^{3} - \frac{499705210446551142600351490896748015614131746279703083319218721871223345055599}{2834126082178019760159783735563813971020621405395409810268008125796272427701798} a^{2} + \frac{6451661829171394576237050199890505992099443304438402190356655208631364033563403}{96360286794052671845432647009169675014701127783443933549112276277073262541861132} a - \frac{11121265917310171252138259751481718383646729606144162475338392959840169183989}{123222873138174772180860162415817998740027017625887383055130788078098801204426}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95814121396.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2160 |
| The 33 conjugacy class representatives for t18n362 |
| Character table for t18n362 is not computed |
Intermediate fields
| 3.3.11881.1, 6.0.20627.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | $15{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $15{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | $15{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 109 | Data not computed | ||||||
| 20627 | Data not computed | ||||||