Normalized defining polynomial
\( x^{18} + 12 x^{16} + 18 x^{14} + 119 x^{12} + 345 x^{10} + 1458 x^{8} + 536 x^{6} + 4587 x^{4} - 3924 x^{2} + 944 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2446685893599555554651329659=-\,3^{24}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{5} - \frac{7}{16} a^{3} - \frac{1}{2}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{8} a^{8} - \frac{1}{32} a^{6} + \frac{1}{32} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{15}{64} a^{7} - \frac{15}{64} a^{6} - \frac{15}{64} a^{5} + \frac{15}{64} a^{4} + \frac{5}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{256} a^{14} + \frac{1}{128} a^{12} + \frac{9}{256} a^{10} + \frac{19}{256} a^{8} - \frac{1}{4} a^{7} + \frac{31}{128} a^{6} - \frac{9}{256} a^{4} - \frac{1}{2} a^{3} + \frac{15}{64} a^{2} + \frac{1}{4} a + \frac{7}{16}$, $\frac{1}{512} a^{15} - \frac{1}{512} a^{14} + \frac{1}{256} a^{13} - \frac{1}{256} a^{12} + \frac{9}{512} a^{11} + \frac{23}{512} a^{10} + \frac{19}{512} a^{9} - \frac{51}{512} a^{8} + \frac{31}{256} a^{7} - \frac{31}{256} a^{6} - \frac{9}{512} a^{5} - \frac{23}{512} a^{4} + \frac{15}{128} a^{3} - \frac{7}{128} a^{2} - \frac{1}{32} a + \frac{1}{32}$, $\frac{1}{83573653504} a^{16} + \frac{87901841}{83573653504} a^{14} - \frac{328913305}{83573653504} a^{12} - \frac{1439048195}{41786826752} a^{10} - \frac{7665711813}{83573653504} a^{8} + \frac{559307557}{2258747392} a^{6} - \frac{778728363}{83573653504} a^{4} + \frac{9113507397}{20893413376} a^{2} - \frac{1}{2} a + \frac{500293441}{5223353344}$, $\frac{1}{167147307008} a^{17} - \frac{1}{167147307008} a^{16} + \frac{87901841}{167147307008} a^{15} - \frac{87901841}{167147307008} a^{14} - \frac{328913305}{167147307008} a^{13} + \frac{328913305}{167147307008} a^{12} - \frac{1439048195}{83573653504} a^{11} + \frac{1439048195}{83573653504} a^{10} - \frac{7665711813}{167147307008} a^{9} + \frac{7665711813}{167147307008} a^{8} + \frac{559307557}{4517494784} a^{7} - \frac{559307557}{4517494784} a^{6} + \frac{41008098389}{167147307008} a^{5} - \frac{41008098389}{167147307008} a^{4} + \frac{9113507397}{41786826752} a^{3} + \frac{11779905979}{41786826752} a^{2} + \frac{500293441}{10446706688} a + \frac{4723059903}{10446706688}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4622263.54519 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 3.1.59.1 x3, 6.0.205379.1, 9.1.6439662447201.3 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.2 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 54$ | $3$ | $3$ | $12$ | $C_9$ | $[2]^{3}$ |
| 3.9.12.2 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 54$ | $3$ | $3$ | $12$ | $C_9$ | $[2]^{3}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |