Normalized defining polynomial
\( x^{18} - 5 x^{17} + 256 x^{16} - 1254 x^{15} + 23031 x^{14} - 128645 x^{13} + 995929 x^{12} - 6792838 x^{11} + 48781375 x^{10} - 102865150 x^{9} + 3289661823 x^{8} + 8469771305 x^{7} + 124438453933 x^{6} + 413878987297 x^{5} + 2872304692608 x^{4} + 7963413486647 x^{3} + 34868873043404 x^{2} + 64347661656908 x + 153482306734184 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24452875343497320288961601897227861400802734375=-\,5^{9}\cdot 7^{15}\cdot 13^{15}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $377.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{2}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{25182} a^{16} + \frac{1189}{25182} a^{15} - \frac{1511}{12591} a^{14} + \frac{22}{4197} a^{13} + \frac{419}{8394} a^{12} + \frac{775}{8394} a^{11} + \frac{251}{8394} a^{10} + \frac{419}{12591} a^{9} - \frac{887}{2798} a^{8} + \frac{4693}{12591} a^{7} - \frac{2261}{25182} a^{6} + \frac{7271}{25182} a^{5} - \frac{6857}{25182} a^{4} + \frac{2479}{25182} a^{3} - \frac{11}{4197} a^{2} + \frac{11335}{25182} a - \frac{4523}{12591}$, $\frac{1}{180499367810026540843059002496823774872065100208274331414827546491962385307106399652289931633386862732} a^{17} - \frac{1052316684465196685433149582727778890481705842979076328525433577055400597456607285388837710715193}{60166455936675513614353000832274591624021700069424777138275848830654128435702133217429977211128954244} a^{16} - \frac{2533221442400078311736663822265311488783098193470332668021830649295042122853268620082172733543796505}{90249683905013270421529501248411887436032550104137165707413773245981192653553199826144965816693431366} a^{15} - \frac{3441462394007207007732664378296245362357942063254113319625840870725643683874377780285887785500420709}{90249683905013270421529501248411887436032550104137165707413773245981192653553199826144965816693431366} a^{14} - \frac{1385536930029545119322697727069331006279739842559258019732571824833756457924714781605948619979975941}{20055485312225171204784333610758197208007233356474925712758616276884709478567377739143325737042984748} a^{13} + \frac{1107694574497884634795739652960560875017220448234759165341288584314895618271919172476455757772710837}{20055485312225171204784333610758197208007233356474925712758616276884709478567377739143325737042984748} a^{12} - \frac{892718354386677658417229799573106272445635231141784992099405957780901070941082075222215036797039263}{60166455936675513614353000832274591624021700069424777138275848830654128435702133217429977211128954244} a^{11} + \frac{4864029581534943679078841492436693351912887627075442763827397389213697373373695088214664991016320349}{45124841952506635210764750624205943718016275052068582853706886622990596326776599913072482908346715683} a^{10} + \frac{25097274859071989665057447700245907876057606495749860805541479683452280624293987816927770815013137191}{180499367810026540843059002496823774872065100208274331414827546491962385307106399652289931633386862732} a^{9} - \frac{2002141632005439173630843879977188684098395121551437744432233446460914938722719816260243934161522808}{45124841952506635210764750624205943718016275052068582853706886622990596326776599913072482908346715683} a^{8} - \frac{37433740238862143112217252359185505659652836469575113244113440176956286665050626604957107537898393121}{180499367810026540843059002496823774872065100208274331414827546491962385307106399652289931633386862732} a^{7} + \frac{57187210037746450200654906492173176250011312029292294786961112581193218298907704621999759510573955807}{180499367810026540843059002496823774872065100208274331414827546491962385307106399652289931633386862732} a^{6} - \frac{69205339004080276324688015047313602743022569647416593055233506781780762689658205892384790540886263241}{180499367810026540843059002496823774872065100208274331414827546491962385307106399652289931633386862732} a^{5} + \frac{11431627336979505647311655601869465369575158190588297726762670708291935611375416694508706020702815577}{60166455936675513614353000832274591624021700069424777138275848830654128435702133217429977211128954244} a^{4} + \frac{37444090803012524252804693296346076328198072513799052237947655259051355662056845870228614488140856439}{90249683905013270421529501248411887436032550104137165707413773245981192653553199826144965816693431366} a^{3} - \frac{73336455433674484975449810379647998251014073764660080547507234567217090806605281764064733994381900869}{180499367810026540843059002496823774872065100208274331414827546491962385307106399652289931633386862732} a^{2} + \frac{15217430538203412779266729274433864511423053435020082213124535797885722233554573688888037045268849199}{90249683905013270421529501248411887436032550104137165707413773245981192653553199826144965816693431366} a - \frac{7011157118079536447823088546988127972469658387706082927971796618093747164284254851717660884248438475}{45124841952506635210764750624205943718016275052068582853706886622990596326776599913072482908346715683}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10857210}$, which has order $173715360$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39072844.256274134 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), 3.3.10309.1, 3.3.8281.2, Deg 6, 6.0.780040181375.2, 9.9.128895530697518221.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 13 | Data not computed | ||||||
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |