Normalized defining polynomial
\( x^{18} + 7 x^{16} - 4 x^{15} + 21 x^{14} - 14 x^{13} + 44 x^{12} - 42 x^{11} + 63 x^{10} - 29 x^{9} - 7 x^{8} - 14 x^{7} + 67 x^{6} - 112 x^{5} + 105 x^{4} - 65 x^{3} + 28 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2441846738989574698663=-\,7^{15}\cdot 22679^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 22679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{28823118226979} a^{17} - \frac{7887672244992}{28823118226979} a^{16} - \frac{13226615622418}{28823118226979} a^{15} - \frac{13421637667163}{28823118226979} a^{14} - \frac{10805348651651}{28823118226979} a^{13} - \frac{2426929238191}{28823118226979} a^{12} + \frac{7768874730856}{28823118226979} a^{11} + \frac{6839999844043}{28823118226979} a^{10} - \frac{13925585473101}{28823118226979} a^{9} + \frac{4752995374337}{28823118226979} a^{8} + \frac{2232325532181}{28823118226979} a^{7} - \frac{9692681197613}{28823118226979} a^{6} - \frac{3076363707937}{28823118226979} a^{5} + \frac{14308355022484}{28823118226979} a^{4} + \frac{14051406174313}{28823118226979} a^{3} + \frac{14201598272359}{28823118226979} a^{2} + \frac{1278616740366}{28823118226979} a - \frac{6111844114617}{28823118226979}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{39236251995471}{28823118226979} a^{17} - \frac{13550143165583}{28823118226979} a^{16} - \frac{278892668479602}{28823118226979} a^{15} + \frac{61373112717544}{28823118226979} a^{14} - \frac{798328628506907}{28823118226979} a^{13} + \frac{277186195462692}{28823118226979} a^{12} - \frac{1616111860465958}{28823118226979} a^{11} + \frac{1093600635191647}{28823118226979} a^{10} - \frac{2065905829327401}{28823118226979} a^{9} + \frac{419853805631494}{28823118226979} a^{8} + \frac{453591459307878}{28823118226979} a^{7} + \frac{689352358791246}{28823118226979} a^{6} - \frac{2372097723796100}{28823118226979} a^{5} + \frac{3552362317552375}{28823118226979} a^{4} - \frac{2921644430980633}{28823118226979} a^{3} + \frac{1518729123254790}{28823118226979} a^{2} - \frac{501234009956309}{28823118226979} a + \frac{63661091866187}{28823118226979} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8111.04910311 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n286 |
| Character table for t18n286 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.7.2668161671.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 22679 | Data not computed | ||||||