Normalized defining polynomial
\( x^{18} - 2375 x^{12} + 2291875 x^{6} + 421875 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-243706199334710775656643000000000000=-\,2^{12}\cdot 3^{21}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{50} a^{6} - \frac{1}{2}$, $\frac{1}{50} a^{7} - \frac{1}{2} a$, $\frac{1}{150} a^{8} - \frac{1}{6} a^{2}$, $\frac{1}{1500} a^{9} - \frac{1}{100} a^{6} - \frac{1}{60} a^{3} + \frac{1}{4}$, $\frac{1}{4500} a^{10} - \frac{1}{100} a^{7} + \frac{11}{180} a^{4} + \frac{1}{4} a$, $\frac{1}{4500} a^{11} - \frac{1}{300} a^{8} + \frac{11}{180} a^{5} + \frac{1}{12} a^{2}$, $\frac{1}{3825000} a^{12} + \frac{613}{76500} a^{6} - \frac{1}{10} a^{3} - \frac{183}{680}$, $\frac{1}{3825000} a^{13} + \frac{613}{76500} a^{7} - \frac{1}{10} a^{4} - \frac{183}{680} a$, $\frac{1}{3825000} a^{14} + \frac{103}{76500} a^{8} - \frac{1}{10} a^{5} - \frac{209}{2040} a^{2}$, $\frac{1}{57375000} a^{15} - \frac{1}{11475000} a^{13} - \frac{1}{13500} a^{11} + \frac{103}{1147500} a^{9} - \frac{1}{300} a^{8} + \frac{917}{229500} a^{7} - \frac{47}{540} a^{5} - \frac{1}{10} a^{4} - \frac{209}{30600} a^{3} + \frac{1}{12} a^{2} + \frac{523}{2040} a - \frac{1}{2}$, $\frac{1}{57375000} a^{16} - \frac{1}{11475000} a^{14} - \frac{1}{11475000} a^{12} + \frac{103}{1147500} a^{10} - \frac{613}{229500} a^{8} - \frac{2143}{229500} a^{6} - \frac{1}{10} a^{5} - \frac{209}{30600} a^{4} - \frac{1}{10} a^{3} + \frac{863}{2040} a^{2} - \frac{1}{2} a - \frac{279}{680}$, $\frac{1}{57375000} a^{17} - \frac{67}{1147500} a^{11} - \frac{1}{4500} a^{9} + \frac{1}{150} a^{7} - \frac{1}{100} a^{6} + \frac{1753}{91800} a^{5} - \frac{11}{180} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{4}$
Class group and class number
$C_{3}\times C_{3}\times C_{6}\times C_{6}\times C_{6}\times C_{6}$, which has order $11664$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{1125000} a^{15} - \frac{47}{22500} a^{9} + \frac{1211}{600} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51438917.8599 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.2028.1 x3, 3.1.2700.1 x3, 3.1.114075.1 x3, 3.1.456300.1 x3, 6.0.12338352.2, 6.0.21870000.2, 6.0.39039316875.1, 6.0.624629070000.1, 9.1.285018244641000000.10 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |