Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 150 x^{15} + 369 x^{14} - 711 x^{13} + 1114 x^{12} - 1473 x^{11} + 1956 x^{10} - 3127 x^{9} + 5337 x^{8} - 7785 x^{7} + 8797 x^{6} - 7140 x^{5} + 3858 x^{4} - 1187 x^{3} + 264 x^{2} - 15 x + 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-243706199334710775656643=-\,3^{21}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{15} a^{11} - \frac{1}{15} a^{10} + \frac{1}{15} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{15} a^{5} + \frac{7}{15} a^{4} + \frac{1}{3} a^{3} - \frac{2}{15} a^{2} - \frac{4}{15} a - \frac{1}{3}$, $\frac{1}{15} a^{12} - \frac{2}{15} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{15} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{3}$, $\frac{1}{15} a^{13} - \frac{2}{15} a^{10} - \frac{2}{15} a^{9} + \frac{1}{5} a^{8} - \frac{1}{15} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{15} a^{3} + \frac{2}{5} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{10} - \frac{7}{15} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{7}{15} a^{5} - \frac{7}{15} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{7}{15} a$, $\frac{1}{39195} a^{15} - \frac{27}{871} a^{14} - \frac{1094}{39195} a^{13} - \frac{17}{7839} a^{12} + \frac{1258}{39195} a^{11} + \frac{4291}{39195} a^{10} - \frac{979}{13065} a^{9} - \frac{4769}{13065} a^{8} - \frac{10378}{39195} a^{7} - \frac{14}{117} a^{6} + \frac{14789}{39195} a^{5} + \frac{257}{1005} a^{4} + \frac{1880}{7839} a^{3} + \frac{14269}{39195} a^{2} + \frac{7597}{39195} a - \frac{31}{7839}$, $\frac{1}{509535} a^{16} + \frac{2}{169845} a^{15} - \frac{16103}{509535} a^{14} + \frac{922}{101907} a^{13} + \frac{1993}{509535} a^{12} - \frac{1361}{509535} a^{11} - \frac{337}{13065} a^{10} + \frac{5336}{169845} a^{9} - \frac{44072}{101907} a^{8} + \frac{164054}{509535} a^{7} + \frac{243326}{509535} a^{6} + \frac{8543}{56615} a^{5} - \frac{125072}{509535} a^{4} + \frac{31051}{509535} a^{3} + \frac{210376}{509535} a^{2} + \frac{153799}{509535} a + \frac{3343}{11323}$, $\frac{1}{100231139385} a^{17} + \frac{58531}{100231139385} a^{16} - \frac{60167}{20046227877} a^{15} - \frac{128430734}{33410379795} a^{14} - \frac{572319479}{100231139385} a^{13} - \frac{208214699}{7710087645} a^{12} - \frac{1542068662}{100231139385} a^{11} + \frac{6762554752}{100231139385} a^{10} + \frac{5438563193}{100231139385} a^{9} - \frac{50061731807}{100231139385} a^{8} + \frac{1165517608}{33410379795} a^{7} - \frac{244075822}{1542017529} a^{6} - \frac{2825868458}{33410379795} a^{5} - \frac{30307864594}{100231139385} a^{4} + \frac{2923921984}{11136793265} a^{3} + \frac{702217442}{33410379795} a^{2} - \frac{19312396282}{100231139385} a - \frac{2444136544}{20046227877}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{64259656}{11136793265} a^{17} + \frac{1483980817}{33410379795} a^{16} - \frac{1308279124}{6682075959} a^{15} + \frac{3736208222}{6682075959} a^{14} - \frac{38451552422}{33410379795} a^{13} + \frac{59936437858}{33410379795} a^{12} - \frac{71673079382}{33410379795} a^{11} + \frac{68024457164}{33410379795} a^{10} - \frac{100318186318}{33410379795} a^{9} + \frac{227802295316}{33410379795} a^{8} - \frac{10358995994}{856676405} a^{7} + \frac{29450285438}{2227358653} a^{6} - \frac{70620724062}{11136793265} a^{5} - \frac{39140535223}{6682075959} a^{4} + \frac{419780678266}{33410379795} a^{3} - \frac{23999553368}{2570029215} a^{2} + \frac{1615832307}{856676405} a + \frac{564780243}{2227358653} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61890.554687 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.4563.1 x3, 3.3.169.1, 6.0.62462907.1, 6.0.369603.2 x2, 6.0.771147.1, 9.3.95006081547.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.369603.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |