Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 207 x^{14} - 273 x^{13} + 586 x^{12} - 2229 x^{11} + 5508 x^{10} - 8037 x^{9} + 8343 x^{8} - 8421 x^{7} + 39985 x^{6} - 100956 x^{5} + 128958 x^{4} - 95049 x^{3} + 42606 x^{2} - 11151 x + 1323 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24335159153759228982627211382163=-\,3^{9}\cdot 181^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{21} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{2}{7} a$, $\frac{1}{21} a^{8} - \frac{1}{21} a^{2}$, $\frac{1}{21} a^{9} - \frac{1}{21} a^{3}$, $\frac{1}{21} a^{10} - \frac{1}{21} a^{4}$, $\frac{1}{105} a^{11} + \frac{2}{105} a^{10} - \frac{2}{105} a^{9} - \frac{1}{105} a^{8} - \frac{2}{105} a^{7} + \frac{2}{15} a^{6} + \frac{16}{35} a^{5} - \frac{3}{35} a^{4} + \frac{3}{35} a^{3} - \frac{16}{35} a^{2} + \frac{3}{35} a + \frac{2}{5}$, $\frac{1}{315} a^{12} - \frac{1}{315} a^{10} + \frac{1}{105} a^{9} + \frac{1}{105} a^{7} + \frac{4}{63} a^{6} - \frac{1}{3} a^{5} + \frac{22}{315} a^{4} + \frac{16}{35} a^{3} - \frac{1}{3} a^{2} + \frac{16}{35} a + \frac{2}{5}$, $\frac{1}{315} a^{13} - \frac{1}{315} a^{11} + \frac{1}{105} a^{10} + \frac{1}{105} a^{8} + \frac{1}{63} a^{7} - \frac{83}{315} a^{5} - \frac{22}{105} a^{4} + \frac{1}{3} a^{3} - \frac{22}{105} a^{2} + \frac{4}{35} a$, $\frac{1}{2205} a^{14} - \frac{1}{315} a^{10} + \frac{2}{105} a^{9} - \frac{37}{2205} a^{8} - \frac{1}{105} a^{7} + \frac{1}{3} a^{5} + \frac{127}{315} a^{4} - \frac{3}{35} a^{3} - \frac{9}{49} a^{2} - \frac{16}{35} a$, $\frac{1}{2205} a^{15} - \frac{1}{315} a^{11} + \frac{2}{105} a^{10} - \frac{37}{2205} a^{9} - \frac{1}{105} a^{8} + \frac{127}{315} a^{5} - \frac{44}{105} a^{4} - \frac{9}{49} a^{3} + \frac{22}{105} a^{2}$, $\frac{1}{241912755} a^{16} - \frac{8}{241912755} a^{15} - \frac{8336}{48382551} a^{14} + \frac{2780}{2303931} a^{13} + \frac{1693}{3839885} a^{12} + \frac{24692}{34558965} a^{11} - \frac{5165197}{241912755} a^{10} - \frac{4895434}{241912755} a^{9} + \frac{2358262}{241912755} a^{8} + \frac{47637}{3839885} a^{7} + \frac{341916}{3839885} a^{6} + \frac{3416011}{34558965} a^{5} - \frac{6784007}{16127517} a^{4} - \frac{6198928}{16127517} a^{3} - \frac{1125286}{26879195} a^{2} + \frac{292741}{3839885} a - \frac{154607}{548555}$, $\frac{1}{1209563775} a^{17} - \frac{1}{1209563775} a^{16} + \frac{177686}{1209563775} a^{15} + \frac{4}{34558965} a^{14} + \frac{197426}{172794825} a^{13} - \frac{29357}{57598275} a^{12} - \frac{53763}{26879195} a^{11} + \frac{6027472}{403187925} a^{10} + \frac{19873816}{1209563775} a^{9} - \frac{175202}{172794825} a^{8} - \frac{4015037}{172794825} a^{7} + \frac{2797349}{19199425} a^{6} + \frac{435021371}{1209563775} a^{5} + \frac{151594687}{1209563775} a^{4} + \frac{63374308}{403187925} a^{3} - \frac{730182}{2742775} a^{2} + \frac{206299}{548555} a - \frac{107588}{391825}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{14104942}{1209563775} a^{17} + \frac{119892007}{1209563775} a^{16} - \frac{163435924}{403187925} a^{15} + \frac{51178726}{48382551} a^{14} - \frac{108809614}{57598275} a^{13} + \frac{388670542}{172794825} a^{12} - \frac{1385312318}{241912755} a^{11} + \frac{28000634948}{1209563775} a^{10} - \frac{21254125954}{403187925} a^{9} + \frac{81769084148}{1209563775} a^{8} - \frac{526514606}{8228325} a^{7} + \frac{11541737738}{172794825} a^{6} - \frac{524248456912}{1209563775} a^{5} + \frac{129169716769}{134395975} a^{4} - \frac{414472775746}{403187925} a^{3} + \frac{81062935346}{134395975} a^{2} - \frac{782641443}{3839885} a + \frac{90145802}{2742775} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 782508303.126 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.98283.1 x3, 3.3.32761.1, 6.0.28978644267.1, 6.0.884547.1 x2, 6.0.28978644267.2, 9.3.949369364831187.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.884547.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $181$ | 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |