Normalized defining polynomial
\( x^{18} + 1302 x^{16} + 537075 x^{14} + 87091648 x^{12} + 7014895419 x^{10} + 308465253054 x^{8} + 7475073472013 x^{6} + 92453456727660 x^{4} + 451572633759492 x^{2} + 194277433462336 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2432575246331888759197234289996630135894514528681984000000=-\,2^{30}\cdot 3^{24}\cdot 5^{6}\cdot 7^{14}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1542.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{434} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{868} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8680} a^{8} - \frac{1}{1736} a^{7} - \frac{1}{868} a^{6} - \frac{1}{4} a^{5} - \frac{1}{40} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{5}$, $\frac{1}{8680} a^{9} - \frac{1}{1736} a^{7} + \frac{9}{40} a^{5} + \frac{1}{8} a^{3} - \frac{1}{20} a$, $\frac{1}{34720} a^{10} + \frac{1}{34720} a^{8} + \frac{13}{34720} a^{6} - \frac{1}{160} a^{4} - \frac{1}{2} a^{3} - \frac{11}{80} a^{2} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{7534240} a^{11} + \frac{1}{34720} a^{9} - \frac{11}{34720} a^{7} + \frac{6023}{34720} a^{5} - \frac{3}{80} a^{3} - \frac{1}{5} a$, $\frac{1}{37671200} a^{12} - \frac{1}{43400} a^{8} + \frac{9}{17360} a^{6} + \frac{147}{800} a^{4} - \frac{1}{2} a^{3} - \frac{17}{80} a^{2} - \frac{1}{2} a + \frac{8}{25}$, $\frac{1}{1393834400} a^{13} - \frac{1}{39823840} a^{11} + \frac{121}{6423200} a^{9} + \frac{11}{256928} a^{7} + \frac{90141}{458800} a^{5} - \frac{147}{370} a^{3} - \frac{309}{1850} a$, $\frac{1}{278766880000} a^{14} + \frac{611}{69691720000} a^{12} - \frac{1327}{642320000} a^{10} - \frac{573}{40145000} a^{8} - \frac{1}{1736} a^{7} + \frac{1167809}{1284640000} a^{6} - \frac{1}{4} a^{5} + \frac{201337}{1480000} a^{4} + \frac{1}{8} a^{3} + \frac{23369}{1480000} a^{2} + \frac{1}{4} a - \frac{127}{2500}$, $\frac{1}{120984825920000} a^{15} - \frac{1}{557533760000} a^{14} + \frac{33}{139383440000} a^{13} + \frac{177}{19911920000} a^{12} - \frac{5827}{278766880000} a^{11} - \frac{17173}{1284640000} a^{10} - \frac{1752017}{69691720000} a^{9} + \frac{1781}{45880000} a^{8} - \frac{488623}{2569280000} a^{7} - \frac{2462809}{2569280000} a^{6} + \frac{14322491}{91760000} a^{5} + \frac{42863}{2960000} a^{4} - \frac{23280631}{642320000} a^{3} + \frac{235631}{2960000} a^{2} - \frac{55897}{185000} a - \frac{573}{5000}$, $\frac{1}{1671317704479938368000000} a^{16} - \frac{5391687731}{7701924905437504000000} a^{14} + \frac{37091197421287}{3850962452718752000000} a^{12} - \frac{39742067563760951}{3850962452718752000000} a^{10} + \frac{18112218364949}{7098548299942400000} a^{8} - \frac{36821631882507419}{35492741499712000000} a^{6} + \frac{977911929413512221}{4436592687464000000} a^{4} + \frac{1180775225514201}{40890255184000000} a^{2} - \frac{29603667802099}{69071377000000}$, $\frac{1}{1671317704479938368000000} a^{17} + \frac{4217171373}{1671317704479938368000000} a^{15} - \frac{1}{557533760000} a^{14} + \frac{1312224135287}{3850962452718752000000} a^{13} + \frac{177}{19911920000} a^{12} - \frac{195872304803951}{3850962452718752000000} a^{11} - \frac{17173}{1284640000} a^{10} - \frac{85156142442154867}{1540384981087500800000} a^{9} + \frac{1781}{45880000} a^{8} - \frac{11471814881114419}{35492741499712000000} a^{7} - \frac{2462809}{2569280000} a^{6} + \frac{1023728666026348721}{4436592687464000000} a^{5} + \frac{42863}{2960000} a^{4} + \frac{3325447531692902617}{8873185374928000000} a^{3} + \frac{235631}{2960000} a^{2} + \frac{1117089568009337}{2555640949000000} a - \frac{573}{5000}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{77921736}$, which has order $14960973312$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13383675}{53482166543358027776} a^{17} - \frac{16864227559}{53482166543358027776} a^{15} - \frac{14933165085}{123230798487000064} a^{13} - \frac{2060151284115}{123230798487000064} a^{11} - \frac{260403046743675}{246461596974000128} a^{9} - \frac{5386053065025}{162252532570112} a^{7} - \frac{326177059887}{654244082944} a^{5} - \frac{814866213005035}{283941931997696} a^{3} - \frac{221199139395}{81780510368} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162297974877455.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.8680.1, 3.3.3814209.2, 6.0.1205478400.2, 6.0.931084178923584.3, 9.9.770642875136723935897152000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 31.12.10.1 | $x^{12} + 69161 x^{6} + 2869530624$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |