Normalized defining polynomial
\( x^{18} - x^{17} + 12 x^{16} - 17 x^{15} - 4 x^{14} - 76 x^{13} - 154 x^{12} - 82 x^{11} + 1159 x^{10} + 816 x^{9} + 3265 x^{8} + 3887 x^{7} + 3898 x^{6} + 8175 x^{5} + 5605 x^{4} + 2715 x^{3} + 10718 x^{2} + 4141 x + 9619 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-243008175525757569678159896851=-\,7^{15}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(91=7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{91}(1,·)$, $\chi_{91}(69,·)$, $\chi_{91}(9,·)$, $\chi_{91}(10,·)$, $\chi_{91}(75,·)$, $\chi_{91}(12,·)$, $\chi_{91}(79,·)$, $\chi_{91}(16,·)$, $\chi_{91}(17,·)$, $\chi_{91}(82,·)$, $\chi_{91}(22,·)$, $\chi_{91}(90,·)$, $\chi_{91}(29,·)$, $\chi_{91}(38,·)$, $\chi_{91}(81,·)$, $\chi_{91}(53,·)$, $\chi_{91}(74,·)$, $\chi_{91}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5039} a^{15} + \frac{1771}{5039} a^{14} + \frac{2270}{5039} a^{13} + \frac{1163}{5039} a^{12} + \frac{973}{5039} a^{11} + \frac{628}{5039} a^{10} + \frac{1663}{5039} a^{9} - \frac{1993}{5039} a^{8} - \frac{924}{5039} a^{7} + \frac{1261}{5039} a^{6} - \frac{2358}{5039} a^{5} + \frac{1183}{5039} a^{4} - \frac{75}{5039} a^{3} - \frac{2117}{5039} a^{2} - \frac{840}{5039} a + \frac{971}{5039}$, $\frac{1}{1698143} a^{16} + \frac{133}{1698143} a^{15} - \frac{127178}{1698143} a^{14} + \frac{702106}{1698143} a^{13} + \frac{46072}{1698143} a^{12} + \frac{765106}{1698143} a^{11} + \frac{86618}{1698143} a^{10} - \frac{413086}{1698143} a^{9} + \frac{330912}{1698143} a^{8} - \frac{692309}{1698143} a^{7} - \frac{87549}{1698143} a^{6} + \frac{391716}{1698143} a^{5} + \frac{203746}{1698143} a^{4} - \frac{70749}{1698143} a^{3} - \frac{438419}{1698143} a^{2} + \frac{832679}{1698143} a - \frac{194695}{1698143}$, $\frac{1}{908515410611947997992191397403} a^{17} + \frac{124384888204068054943576}{908515410611947997992191397403} a^{16} + \frac{88596552002020052130245650}{908515410611947997992191397403} a^{15} - \frac{243401284138517113194394693833}{908515410611947997992191397403} a^{14} + \frac{149390836022515112394949583845}{908515410611947997992191397403} a^{13} - \frac{317917991797020188446026621092}{908515410611947997992191397403} a^{12} - \frac{427616493419743565804081833537}{908515410611947997992191397403} a^{11} - \frac{380756766663800673608982955000}{908515410611947997992191397403} a^{10} + \frac{102674902285183186281912746507}{908515410611947997992191397403} a^{9} - \frac{238854646088076789490037337117}{908515410611947997992191397403} a^{8} - \frac{250310787849268068986313738875}{908515410611947997992191397403} a^{7} + \frac{83690913881475950388853786747}{908515410611947997992191397403} a^{6} - \frac{190176143272571604224978118008}{908515410611947997992191397403} a^{5} - \frac{347624456767148117291246807731}{908515410611947997992191397403} a^{4} + \frac{106544045884263233980743002584}{908515410611947997992191397403} a^{3} - \frac{323424063289605625830939064601}{908515410611947997992191397403} a^{2} - \frac{289160458484631781526103116260}{908515410611947997992191397403} a + \frac{3921881911628605139183786940}{908515410611947997992191397403}$
Class group and class number
$C_{2}\times C_{2}\times C_{14}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 6.0.6240321451.1, 6.0.127353499.1, 6.0.36924979.1, 6.0.6240321451.2, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |