Normalized defining polynomial
\( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 201 x^{14} - 76 x^{13} + 999 x^{12} - 218 x^{11} + 3519 x^{10} - 623 x^{9} + 5540 x^{8} + 1505 x^{7} + 5069 x^{6} - 129 x^{5} + 528 x^{4} - 97 x^{3} + 56 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-242839247007536485508643885603=-\,3^{9}\cdot 37^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(111=3\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{111}(1,·)$, $\chi_{111}(70,·)$, $\chi_{111}(7,·)$, $\chi_{111}(10,·)$, $\chi_{111}(16,·)$, $\chi_{111}(83,·)$, $\chi_{111}(86,·)$, $\chi_{111}(71,·)$, $\chi_{111}(26,·)$, $\chi_{111}(34,·)$, $\chi_{111}(100,·)$, $\chi_{111}(38,·)$, $\chi_{111}(107,·)$, $\chi_{111}(44,·)$, $\chi_{111}(46,·)$, $\chi_{111}(47,·)$, $\chi_{111}(49,·)$, $\chi_{111}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} + \frac{12}{31} a^{13} + \frac{3}{31} a^{12} + \frac{10}{31} a^{11} - \frac{1}{31} a^{10} + \frac{3}{31} a^{9} - \frac{15}{31} a^{8} - \frac{5}{31} a^{7} - \frac{3}{31} a^{6} + \frac{10}{31} a^{4} - \frac{9}{31} a^{3} - \frac{5}{31} a + \frac{1}{31}$, $\frac{1}{1333} a^{15} - \frac{5}{1333} a^{14} + \frac{605}{1333} a^{13} - \frac{227}{1333} a^{12} + \frac{666}{1333} a^{11} - \frac{631}{1333} a^{10} - \frac{469}{1333} a^{9} - \frac{370}{1333} a^{8} - \frac{228}{1333} a^{7} - \frac{42}{1333} a^{6} - \frac{207}{1333} a^{5} + \frac{131}{1333} a^{4} + \frac{153}{1333} a^{3} - \frac{315}{1333} a^{2} + \frac{644}{1333} a + \frac{231}{1333}$, $\frac{1}{1333} a^{16} + \frac{21}{1333} a^{14} + \frac{89}{1333} a^{13} + \frac{520}{1333} a^{12} - \frac{225}{1333} a^{11} - \frac{399}{1333} a^{10} - \frac{393}{1333} a^{9} - \frac{358}{1333} a^{8} + \frac{280}{1333} a^{7} - \frac{73}{1333} a^{6} + \frac{429}{1333} a^{5} + \frac{550}{1333} a^{4} + \frac{149}{1333} a^{3} + \frac{402}{1333} a^{2} - \frac{419}{1333} a + \frac{596}{1333}$, $\frac{1}{145926445271948161921} a^{17} + \frac{26204538570308632}{145926445271948161921} a^{16} + \frac{20323563375242612}{145926445271948161921} a^{15} - \frac{1154432235088637782}{145926445271948161921} a^{14} + \frac{9260552738894825187}{145926445271948161921} a^{13} + \frac{54373274018046184763}{145926445271948161921} a^{12} + \frac{12610812834168077979}{145926445271948161921} a^{11} + \frac{47571110862336927666}{145926445271948161921} a^{10} - \frac{44556781532057638209}{145926445271948161921} a^{9} - \frac{35545052376878957565}{145926445271948161921} a^{8} - \frac{6640745932467620792}{145926445271948161921} a^{7} - \frac{50859099305401700166}{145926445271948161921} a^{6} + \frac{14281435877137699830}{145926445271948161921} a^{5} - \frac{7440189057094898258}{145926445271948161921} a^{4} - \frac{19713058543455673274}{145926445271948161921} a^{3} + \frac{21428572255115086920}{145926445271948161921} a^{2} - \frac{64687490838118477220}{145926445271948161921} a + \frac{68441920583577122445}{145926445271948161921}$
Class group and class number
$C_{171}$, which has order $171$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{20025969607191039788}{145926445271948161921} a^{17} - \frac{20165950282932610000}{145926445271948161921} a^{16} + \frac{340315133056582183978}{145926445271948161921} a^{15} - \frac{121988076748962363963}{145926445271948161921} a^{14} + \frac{4021290298088786965742}{145926445271948161921} a^{13} - \frac{1543805908980430236049}{145926445271948161921} a^{12} + \frac{19962041145841092640272}{145926445271948161921} a^{11} - \frac{4429506202037532132371}{145926445271948161921} a^{10} + \frac{70222182484462262383690}{145926445271948161921} a^{9} - \frac{407706932425405162452}{4707304686191876191} a^{8} + \frac{110070180432231351495904}{145926445271948161921} a^{7} + \frac{30485040438604793540912}{145926445271948161921} a^{6} + \frac{99776704753695173021893}{145926445271948161921} a^{5} - \frac{2246476066609438087994}{145926445271948161921} a^{4} + \frac{9841717502401981062185}{145926445271948161921} a^{3} - \frac{550607737877098968877}{145926445271948161921} a^{2} + \frac{33525759933045100845}{4707304686191876191} a + \frac{16237411536556207962}{145926445271948161921} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.310213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1369.1, 6.0.50602347.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | $18$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |