Normalized defining polynomial
\( x^{18} - 28 x^{15} + 315 x^{14} + 150 x^{13} + 3095 x^{12} + 270 x^{11} + 11586 x^{10} - 1196 x^{9} + 71424 x^{8} - 109152 x^{7} + 339768 x^{6} - 252432 x^{5} + 419040 x^{4} + 59040 x^{3} + 145152 x^{2} + 20736 x + 5184 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24238444506812135997594990280704=-\,2^{18}\cdot 3^{24}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{12} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{72} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{72} a^{6} + \frac{1}{4} a^{5} + \frac{5}{12} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{72} a^{13} + \frac{1}{24} a^{9} - \frac{1}{4} a^{8} - \frac{1}{72} a^{7} + \frac{1}{4} a^{6} - \frac{1}{12} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{288} a^{14} - \frac{1}{24} a^{11} - \frac{1}{32} a^{10} + \frac{1}{48} a^{9} + \frac{71}{288} a^{8} - \frac{1}{16} a^{7} + \frac{17}{48} a^{6} - \frac{11}{24} a^{5} - \frac{3}{8} a^{4} + \frac{5}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{31968} a^{15} + \frac{41}{31968} a^{14} + \frac{1}{333} a^{13} + \frac{1}{444} a^{12} + \frac{9}{1184} a^{11} - \frac{91}{3552} a^{10} + \frac{413}{31968} a^{9} - \frac{2615}{31968} a^{8} + \frac{71}{2664} a^{7} + \frac{1417}{5328} a^{6} + \frac{1}{111} a^{5} + \frac{427}{888} a^{4} + \frac{221}{444} a^{3} - \frac{5}{111} a^{2} + \frac{23}{74} a + \frac{1}{74}$, $\frac{1}{196283520} a^{16} - \frac{169}{32713920} a^{15} + \frac{81151}{98141760} a^{14} + \frac{7225}{1090464} a^{13} + \frac{20789}{65427840} a^{12} + \frac{82877}{5452320} a^{11} + \frac{7580069}{196283520} a^{10} + \frac{68899}{8178480} a^{9} + \frac{2142049}{49070880} a^{8} - \frac{491629}{5452320} a^{7} + \frac{205499}{1363080} a^{6} - \frac{223841}{545232} a^{5} + \frac{35259}{908720} a^{4} - \frac{142259}{454360} a^{3} - \frac{3283}{36840} a^{2} - \frac{28893}{227180} a - \frac{70291}{227180}$, $\frac{1}{143376366735993648560117658998400} a^{17} + \frac{8467602213465118097273}{143376366735993648560117658998400} a^{16} - \frac{36019876619264370386964037}{17922045841999206070014707374800} a^{15} - \frac{17733258279062300376713178743}{71688183367996824280058829499200} a^{14} + \frac{3888117728056590339770883281}{5310235805036801798522876259200} a^{13} + \frac{247396441388715115881149639767}{47792122245331216186705886332800} a^{12} - \frac{3810708246302080470511548851107}{143376366735993648560117658998400} a^{11} + \frac{3459779890658774563969532681359}{143376366735993648560117658998400} a^{10} + \frac{79893936049811873519335205131}{1120127865124950379375919210925} a^{9} - \frac{11958834331932936710853740117}{180121063738685488140851330400} a^{8} + \frac{1485303572756780223215559892699}{11948030561332804046676471583200} a^{7} + \frac{1005245064783237776388099940789}{2987007640333201011669117895800} a^{6} + \frac{114681563830259551542817150471}{995669213444400337223039298600} a^{5} + \frac{2517855442612795526390580227}{398267685377760134889215719440} a^{4} + \frac{855869572753184452568618921}{4978346067222001686115196493} a^{3} - \frac{45644044299070068960130341203}{199133842688880067444607859720} a^{2} + \frac{14894919742928690725445612562}{41486217226850014050959970775} a + \frac{51233293759338825513826845853}{165944868907400056203839883100}$
Class group and class number
$C_{3}\times C_{3}\times C_{72}$, which has order $648$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2935408.29793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-41}) \), 3.1.13284.1 x3, \(\Q(\zeta_{9})^+\), 6.0.28940203584.1, 6.0.28940203584.4, 6.0.357286464.1 x2, 9.3.2344156490304.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.357286464.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $41$ | 41.6.3.1 | $x^{6} - 82 x^{4} + 1681 x^{2} - 11647649$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 41.6.3.1 | $x^{6} - 82 x^{4} + 1681 x^{2} - 11647649$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 41.6.3.1 | $x^{6} - 82 x^{4} + 1681 x^{2} - 11647649$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |