Normalized defining polynomial
\( x^{18} - 3 x^{17} + 136 x^{16} - 298 x^{15} + 9007 x^{14} - 12805 x^{13} + 365092 x^{12} - 240073 x^{11} + 9966370 x^{10} - 9139 x^{9} + 196884574 x^{8} + 56268523 x^{7} + 2871719318 x^{6} + 317441289 x^{5} + 30612761917 x^{4} - 6634420134 x^{3} + 212309051196 x^{2} - 1789405059 x + 706194494839 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-242358528402273672667539881228774768857841664=-\,2^{18}\cdot 3^{9}\cdot 7^{15}\cdot 11^{9}\cdot 127^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $292.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1874} a^{12} + \frac{157}{937} a^{11} - \frac{175}{1874} a^{10} - \frac{143}{937} a^{9} - \frac{183}{1874} a^{8} + \frac{336}{937} a^{7} + \frac{243}{1874} a^{6} + \frac{389}{937} a^{5} - \frac{587}{1874} a^{4} - \frac{116}{937} a^{3} + \frac{833}{1874} a^{2} - \frac{138}{937} a - \frac{159}{1874}$, $\frac{1}{1874} a^{13} + \frac{551}{1874} a^{11} + \frac{159}{937} a^{10} - \frac{331}{1874} a^{9} + \frac{20}{937} a^{8} - \frac{877}{1874} a^{7} - \frac{282}{937} a^{6} + \frac{615}{1874} a^{5} + \frac{217}{937} a^{4} + \frac{595}{1874} a^{3} + \frac{261}{937} a^{2} + \frac{301}{1874} a - \frac{336}{937}$, $\frac{1}{54346} a^{14} + \frac{7}{54346} a^{13} - \frac{11}{54346} a^{12} - \frac{9255}{54346} a^{11} + \frac{12167}{54346} a^{10} - \frac{27071}{54346} a^{9} - \frac{17687}{54346} a^{8} + \frac{11047}{54346} a^{7} - \frac{18089}{54346} a^{6} - \frac{16469}{54346} a^{5} - \frac{16911}{54346} a^{4} + \frac{17009}{54346} a^{3} - \frac{18179}{54346} a^{2} - \frac{19609}{54346} a - \frac{5460}{27173}$, $\frac{1}{54346} a^{15} - \frac{1}{27173} a^{13} - \frac{7}{27173} a^{12} - \frac{1312}{27173} a^{11} - \frac{6385}{27173} a^{10} - \frac{11361}{27173} a^{9} - \frac{9074}{27173} a^{8} - \frac{10241}{27173} a^{7} + \frac{10881}{27173} a^{6} - \frac{9365}{27173} a^{5} - \frac{747}{27173} a^{4} - \frac{297}{27173} a^{3} + \frac{27}{27173} a^{2} + \frac{5761}{54346} a - \frac{3308}{27173}$, $\frac{1}{54346} a^{16} - \frac{7}{54346} a^{12} - \frac{8912}{27173} a^{11} - \frac{25445}{54346} a^{10} - \frac{5927}{27173} a^{9} + \frac{4667}{54346} a^{8} + \frac{11923}{27173} a^{7} - \frac{11437}{54346} a^{6} + \frac{3954}{27173} a^{5} - \frac{7475}{54346} a^{4} + \frac{9815}{27173} a^{3} - \frac{3075}{27173} a^{2} - \frac{6677}{27173} a - \frac{6673}{54346}$, $\frac{1}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{17} + \frac{35250321588192250271576341043425784544817442126061833053315335825}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{16} - \frac{18245144741626809278570374875268141581919225397902905051604960455}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{15} + \frac{13179968961496650357969474341495219644200272800089478201554981864}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{14} - \frac{874782773177325594926767336912680685993870367758754732303203265481}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{13} - \frac{124027548403262325456017956333504678165653176878659070516211334716}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{12} - \frac{842885614518220994833013573234192192489399522581436141945796240238463}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{11} - \frac{6819587704805898293877908760656501477502951292825922412450196620349}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{10} - \frac{810631085184411020284035247210332029876991816167160731123168690349}{4330571009755036592802337342180262345989986702522572671318097866898} a^{9} - \frac{884404640747952279035122872692990157373503658053148632085598954096352}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{8} + \frac{826241522793552340670177541007479586977173459614972658393918125776867}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{7} - \frac{886367490645751089964324361146432933038553496257426963188629929214988}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{6} - \frac{264887032867587778183623678459158686317721075686987641426563365296993}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{5} - \frac{266403846785180966130169790964080380475744939442075028875228956087792}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{4} + \frac{455957893344808476426353386826515582146258573022730047196143667623193}{2028872518070234643727895044811452909096308770131825296512528850641713} a^{3} + \frac{1465100977500105306480398769930044000084373335599704518237428870455199}{4057745036140469287455790089622905818192617540263650593025057701283426} a^{2} - \frac{1770327481645434914250581459525907413099639021359158425378159671248227}{4057745036140469287455790089622905818192617540263650593025057701283426} a + \frac{728827100439886435638066451785035958585358030569090666363652189247175}{2028872518070234643727895044811452909096308770131825296512528850641713}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{7657902}$, which has order $367579296$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3608180.2583334274 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\zeta_{7})^+\), 3.3.1016.1, Deg 6, 6.0.603993159.1, 9.9.123386988322304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $127$ | 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |