Normalized defining polynomial
\( x^{18} - 9 x^{17} + 54 x^{16} - 228 x^{15} + 744 x^{14} - 1932 x^{13} + 4228 x^{12} - 7974 x^{11} + 15474 x^{10} - 30444 x^{9} + 62337 x^{8} - 111108 x^{7} + 159331 x^{6} - 174375 x^{5} + 178821 x^{4} - 156870 x^{3} + 111225 x^{2} - 49275 x + 14475 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2422795065922582753693359375=-\,3^{21}\cdot 5^{9}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{115} a^{12} - \frac{6}{115} a^{11} - \frac{11}{115} a^{10} - \frac{1}{23} a^{9} + \frac{38}{115} a^{8} + \frac{42}{115} a^{7} + \frac{32}{115} a^{6} + \frac{11}{23} a^{5} - \frac{9}{115} a^{4} + \frac{29}{115} a^{3} - \frac{16}{115} a^{2} - \frac{7}{23} a - \frac{10}{23}$, $\frac{1}{115} a^{13} - \frac{1}{115} a^{11} - \frac{2}{115} a^{10} + \frac{8}{115} a^{9} + \frac{8}{23} a^{8} - \frac{38}{115} a^{7} - \frac{6}{115} a^{6} - \frac{24}{115} a^{5} - \frac{5}{23} a^{4} - \frac{26}{115} a^{3} + \frac{53}{115} a^{2} - \frac{6}{23} a + \frac{9}{23}$, $\frac{1}{171925} a^{14} - \frac{7}{171925} a^{13} - \frac{504}{171925} a^{12} + \frac{623}{34385} a^{11} + \frac{5923}{171925} a^{10} - \frac{58336}{171925} a^{9} - \frac{46227}{171925} a^{8} + \frac{2148}{6877} a^{7} - \frac{64769}{171925} a^{6} - \frac{15332}{171925} a^{5} + \frac{42051}{171925} a^{4} + \frac{453}{1495} a^{3} + \frac{9883}{34385} a^{2} - \frac{65}{529} a - \frac{2061}{6877}$, $\frac{1}{171925} a^{15} - \frac{553}{171925} a^{13} - \frac{413}{171925} a^{12} - \frac{6657}{171925} a^{11} - \frac{675}{6877} a^{10} + \frac{61196}{171925} a^{9} + \frac{73961}{171925} a^{8} + \frac{36051}{171925} a^{7} + \frac{724}{2645} a^{6} - \frac{5021}{13225} a^{5} + \frac{2602}{171925} a^{4} + \frac{7169}{34385} a^{3} - \frac{3814}{34385} a^{2} - \frac{1099}{6877} a - \frac{673}{6877}$, $\frac{1}{715822631875} a^{16} - \frac{8}{715822631875} a^{15} + \frac{819782}{715822631875} a^{14} - \frac{5738334}{715822631875} a^{13} - \frac{251739538}{715822631875} a^{12} + \frac{1585035206}{715822631875} a^{11} + \frac{28849248591}{715822631875} a^{10} - \frac{158912495017}{715822631875} a^{9} - \frac{216519625317}{715822631875} a^{8} - \frac{310244586773}{715822631875} a^{7} - \frac{173711905498}{715822631875} a^{6} - \frac{151856216659}{715822631875} a^{5} - \frac{74492389981}{715822631875} a^{4} + \frac{1776430774}{143164526375} a^{3} + \frac{13147632377}{28632905275} a^{2} + \frac{17311987}{5726581055} a - \frac{7690330514}{28632905275}$, $\frac{1}{1714395203340625} a^{17} + \frac{1189}{1714395203340625} a^{16} - \frac{3346704094}{1714395203340625} a^{15} - \frac{766677681}{342879040668125} a^{14} - \frac{2915181974811}{1714395203340625} a^{13} + \frac{968950717499}{342879040668125} a^{12} - \frac{151773346409352}{1714395203340625} a^{11} - \frac{17498986161443}{342879040668125} a^{10} + \frac{1503322754062}{3077908803125} a^{9} + \frac{11403336078086}{74538921884375} a^{8} + \frac{176358806714046}{1714395203340625} a^{7} - \frac{168969435745553}{342879040668125} a^{6} - \frac{45331895598358}{131876554103125} a^{5} + \frac{647348917873888}{1714395203340625} a^{4} + \frac{135521267947488}{342879040668125} a^{3} + \frac{5293240634789}{68575808133625} a^{2} + \frac{18072781510431}{68575808133625} a - \frac{21058028555833}{68575808133625}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7766672.0712 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-255}) \), 3.1.255.1 x3, 6.0.16581375.1, 9.1.3082394705625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |