Normalized defining polynomial
\( x^{18} - 2 x^{17} - 4 x^{16} + 22 x^{15} + 44 x^{14} - 74 x^{13} + 223 x^{12} + 312 x^{11} - 1620 x^{10} - 576 x^{9} + 5508 x^{8} - 2916 x^{7} - 3861 x^{6} + 7614 x^{5} + 2916 x^{4} - 486 x^{3} + 2916 x^{2} + 1458 x + 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-242190571378050467501912064=-\,2^{12}\cdot 3^{9}\cdot 113^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{18} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{54} a^{10} + \frac{1}{54} a^{9} + \frac{1}{27} a^{8} - \frac{5}{54} a^{7} - \frac{1}{54} a^{6} - \frac{10}{27} a^{5} - \frac{11}{54} a^{4} + \frac{7}{18} a^{3} - \frac{1}{9} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{54} a^{11} + \frac{1}{54} a^{9} - \frac{1}{54} a^{8} - \frac{1}{27} a^{7} + \frac{5}{54} a^{6} + \frac{7}{18} a^{5} + \frac{10}{27} a^{4} + \frac{7}{18} a^{3} - \frac{7}{18} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{486} a^{12} + \frac{1}{486} a^{11} - \frac{1}{486} a^{10} + \frac{1}{486} a^{9} - \frac{25}{486} a^{8} + \frac{31}{486} a^{7} + \frac{55}{486} a^{6} + \frac{19}{54} a^{5} + \frac{7}{54} a^{4} - \frac{7}{18} a^{3} + \frac{1}{6} a^{2} - \frac{7}{18} a + \frac{4}{9}$, $\frac{1}{972} a^{13} + \frac{7}{972} a^{11} - \frac{7}{972} a^{10} + \frac{1}{972} a^{9} - \frac{25}{972} a^{8} - \frac{19}{324} a^{7} - \frac{127}{972} a^{6} + \frac{17}{108} a^{5} + \frac{11}{36} a^{4} + \frac{5}{36} a^{3} - \frac{5}{12} a^{2} - \frac{1}{3} a - \frac{5}{36}$, $\frac{1}{2916} a^{14} + \frac{1}{2916} a^{13} - \frac{1}{2916} a^{12} - \frac{13}{1458} a^{11} + \frac{1}{1458} a^{10} + \frac{1}{729} a^{9} - \frac{20}{729} a^{8} - \frac{5}{81} a^{7} - \frac{13}{162} a^{6} - \frac{13}{27} a^{5} + \frac{2}{9} a^{4} + \frac{19}{54} a^{3} - \frac{37}{108} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8748} a^{15} + \frac{1}{8748} a^{14} - \frac{1}{2187} a^{13} - \frac{1}{4374} a^{12} - \frac{49}{8748} a^{11} + \frac{55}{8748} a^{10} - \frac{221}{8748} a^{9} - \frac{73}{2916} a^{8} - \frac{259}{2916} a^{7} - \frac{43}{324} a^{6} - \frac{79}{324} a^{5} - \frac{61}{324} a^{4} - \frac{23}{162} a^{3} - \frac{25}{54} a^{2} - \frac{53}{108} a - \frac{5}{12}$, $\frac{1}{7479540} a^{16} + \frac{83}{3739770} a^{15} - \frac{101}{3739770} a^{14} - \frac{112}{373977} a^{13} + \frac{734}{1869885} a^{12} + \frac{37489}{7479540} a^{11} + \frac{64549}{7479540} a^{10} - \frac{8669}{498636} a^{9} + \frac{93007}{2493180} a^{8} - \frac{29729}{277020} a^{7} + \frac{104137}{831060} a^{6} - \frac{12727}{277020} a^{5} - \frac{5047}{69255} a^{4} - \frac{3799}{18468} a^{3} + \frac{38807}{92340} a^{2} - \frac{773}{2052} a - \frac{14197}{30780}$, $\frac{1}{23096108963700} a^{17} + \frac{1011097}{23096108963700} a^{16} - \frac{174325913}{11548054481850} a^{15} - \frac{240962477}{23096108963700} a^{14} + \frac{944156173}{11548054481850} a^{13} - \frac{1177493041}{1154805448185} a^{12} + \frac{76226785693}{23096108963700} a^{11} - \frac{53824542227}{7698702987900} a^{10} + \frac{170559783637}{7698702987900} a^{9} - \frac{22217510593}{2566234329300} a^{8} + \frac{422992709}{27012992940} a^{7} + \frac{126909456157}{855411443100} a^{6} - \frac{7917594305}{17108228862} a^{5} - \frac{74027753}{142568573850} a^{4} + \frac{9236862767}{285137147700} a^{3} - \frac{5252026529}{23761428975} a^{2} + \frac{3099029453}{95045715900} a + \frac{4111309651}{31681905300}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1281109.48365 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-339}) \), 3.1.1356.3 x3, 3.1.339.1 x3, 3.1.1356.2 x3, 3.1.1356.1 x3, 6.0.623331504.1, 6.0.38958219.1, 6.0.623331504.3, 6.0.623331504.2, 9.1.845237519424.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $113$ | 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |