Normalized defining polynomial
\( x^{18} - 21x^{14} + 3x^{12} + 81x^{10} - 18x^{8} + 234x^{6} + 297x^{4} + 135x^{2} + 27 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-2407618658213698882221637632\)
\(\medspace = -\,2^{30}\cdot 3^{21}\cdot 11^{8}\)
|
| |
| Root discriminant: | \(33.20\) |
| |
| Galois root discriminant: | $2^{13/6}3^{25/18}11^{1/2}\approx 68.48514966410112$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}$, $\frac{1}{3}a^{7}$, $\frac{1}{3}a^{8}$, $\frac{1}{3}a^{9}$, $\frac{1}{3}a^{10}$, $\frac{1}{3}a^{11}$, $\frac{1}{9}a^{12}$, $\frac{1}{9}a^{13}$, $\frac{1}{99}a^{14}+\frac{5}{99}a^{12}+\frac{2}{33}a^{10}-\frac{4}{33}a^{8}-\frac{1}{11}a^{4}-\frac{1}{11}a^{2}+\frac{4}{11}$, $\frac{1}{99}a^{15}+\frac{5}{99}a^{13}+\frac{2}{33}a^{11}-\frac{4}{33}a^{9}-\frac{1}{11}a^{5}-\frac{1}{11}a^{3}+\frac{4}{11}a$, $\frac{1}{170577}a^{16}-\frac{58}{15507}a^{14}-\frac{1328}{170577}a^{12}+\frac{2056}{18953}a^{10}+\frac{5344}{56859}a^{8}+\frac{1836}{18953}a^{6}+\frac{3744}{18953}a^{4}-\frac{9176}{18953}a^{2}+\frac{8164}{18953}$, $\frac{1}{170577}a^{17}-\frac{58}{15507}a^{15}-\frac{1328}{170577}a^{13}+\frac{2056}{18953}a^{11}+\frac{5344}{56859}a^{9}+\frac{1836}{18953}a^{7}+\frac{3744}{18953}a^{5}-\frac{9176}{18953}a^{3}+\frac{8164}{18953}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{5245}{170577}a^{16}-\frac{410}{18953}a^{14}-\frac{11980}{18953}a^{12}+\frac{31126}{56859}a^{10}+\frac{121849}{56859}a^{8}-\frac{127583}{56859}a^{6}+\frac{165657}{18953}a^{4}+\frac{62467}{18953}a^{2}+\frac{13968}{18953}$, $\frac{950}{56859}a^{16}-\frac{535}{170577}a^{14}-\frac{59674}{170577}a^{12}+\frac{5923}{56859}a^{10}+\frac{24964}{18953}a^{8}-\frac{14237}{56859}a^{6}+\frac{7036}{1723}a^{4}+\frac{43169}{18953}a^{2}+\frac{24130}{18953}$, $\frac{19}{15507}a^{16}-\frac{266}{18953}a^{14}-\frac{208}{18953}a^{12}+\frac{15815}{56859}a^{10}-\frac{4464}{18953}a^{8}-\frac{1299}{1723}a^{6}+\frac{26099}{18953}a^{4}-\frac{77620}{18953}a^{2}-\frac{6386}{18953}$, $\frac{4867}{170577}a^{16}+\frac{1423}{170577}a^{14}-\frac{103783}{170577}a^{12}-\frac{5342}{56859}a^{10}+\frac{145295}{56859}a^{8}+\frac{7894}{56859}a^{6}+\frac{104703}{18953}a^{4}+\frac{203882}{18953}a^{2}+\frac{77620}{18953}$, $\frac{41}{170577}a^{16}-\frac{313}{170577}a^{14}-\frac{115}{18953}a^{12}+\frac{1330}{56859}a^{10}+\frac{2006}{56859}a^{8}-\frac{536}{18953}a^{6}-\frac{5012}{18953}a^{4}+\frac{1355}{1723}a^{2}+\frac{2185}{18953}$, $\frac{7897}{170577}a^{17}+\frac{10609}{170577}a^{16}-\frac{8849}{170577}a^{15}-\frac{598}{170577}a^{14}-\frac{53759}{56859}a^{13}-\frac{225494}{170577}a^{12}+\frac{70129}{56859}a^{11}+\frac{14002}{56859}a^{10}+\frac{15832}{5169}a^{9}+\frac{302429}{56859}a^{8}-\frac{94918}{18953}a^{7}-\frac{24513}{18953}a^{6}+\frac{258138}{18953}a^{5}+\frac{258227}{18953}a^{4}+\frac{25461}{18953}a^{3}+\frac{333855}{18953}a^{2}-\frac{5022}{1723}a+\frac{98323}{18953}$, $\frac{19457}{56859}a^{17}-\frac{16945}{56859}a^{16}-\frac{46297}{170577}a^{15}-\frac{9637}{170577}a^{14}-\frac{402247}{56859}a^{13}+\frac{1085507}{170577}a^{12}+\frac{11469}{1723}a^{11}+\frac{18490}{56859}a^{10}+\frac{1393165}{56859}a^{9}-\frac{1507901}{56859}a^{8}-\frac{1489558}{56859}a^{7}+\frac{12442}{56859}a^{6}+\frac{1804854}{18953}a^{5}-\frac{1142563}{18953}a^{4}+\frac{521553}{18953}a^{3}-\frac{1833933}{18953}a^{2}-\frac{320082}{18953}a-\frac{569966}{18953}$, $\frac{92855}{170577}a^{17}+\frac{1451}{56859}a^{16}-\frac{2938}{15507}a^{15}-\frac{7379}{56859}a^{14}-\frac{645476}{56859}a^{13}-\frac{98330}{170577}a^{12}+\frac{110029}{18953}a^{11}+\frac{139358}{56859}a^{10}+\frac{2415658}{56859}a^{9}+\frac{24766}{18953}a^{8}-\frac{1517605}{56859}a^{7}-\frac{454093}{56859}a^{6}+\frac{2514990}{18953}a^{5}+\frac{275455}{18953}a^{4}+\frac{2155277}{18953}a^{3}-\frac{29027}{1723}a^{2}+\frac{346233}{18953}a-\frac{274663}{18953}$
|
| |
| Regulator: | \( 917581.32833 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 917581.32833 \cdot 2}{2\cdot\sqrt{2407618658213698882221637632}}\cr\approx \mathstrut & 0.28541022813 \end{aligned}\] (assuming GRH)
Galois group
$C_6^2:D_6$ (as 18T155):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_6^2:D_6$ |
| Character table for $C_6^2:D_6$ |
Intermediate fields
| 3.1.44.1, 6.0.3345408.1, 9.3.18443443392.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.0.980881675568543989053259776.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{7}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{7}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.6.30a1.29 | $x^{18} + 6 x^{16} + 8 x^{15} + 15 x^{14} + 40 x^{13} + 45 x^{12} + 80 x^{11} + 115 x^{10} + 124 x^{9} + 156 x^{8} + 172 x^{7} + 148 x^{6} + 140 x^{5} + 119 x^{4} + 76 x^{3} + 47 x^{2} + 32 x + 13$ | $6$ | $3$ | $30$ | 18T30 | $$[\frac{8}{3}, \frac{8}{3}]_{3}^{6}$$ |
|
\(3\)
| 3.3.6.21a11.4 | $x^{18} + 12 x^{16} + 6 x^{15} + 60 x^{14} + 60 x^{13} + 175 x^{12} + 240 x^{11} + 363 x^{10} + 500 x^{9} + 576 x^{8} + 609 x^{7} + 625 x^{6} + 480 x^{5} + 381 x^{4} + 238 x^{3} + 108 x^{2} + 39 x + 10$ | $6$ | $3$ | $21$ | 18T20 | not computed |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |