Normalized defining polynomial
\( x^{18} + 372 x^{16} + 52452 x^{14} + 3732648 x^{12} + 148347648 x^{10} + 3427494912 x^{8} + 45983342592 x^{6} + 342643212288 x^{4} + 1265144168448 x^{2} + 1686858891264 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24016469656532628829808489513181922235252736=-\,2^{27}\cdot 3^{27}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $257.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2232=2^{3}\cdot 3^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2232}(1,·)$, $\chi_{2232}(1091,·)$, $\chi_{2232}(2113,·)$, $\chi_{2232}(1489,·)$, $\chi_{2232}(1235,·)$, $\chi_{2232}(25,·)$, $\chi_{2232}(1369,·)$, $\chi_{2232}(1859,·)$, $\chi_{2232}(347,·)$, $\chi_{2232}(491,·)$, $\chi_{2232}(1115,·)$, $\chi_{2232}(1513,·)$, $\chi_{2232}(1835,·)$, $\chi_{2232}(625,·)$, $\chi_{2232}(371,·)$, $\chi_{2232}(745,·)$, $\chi_{2232}(1979,·)$, $\chi_{2232}(769,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{744} a^{6}$, $\frac{1}{1488} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{5952} a^{8} - \frac{1}{1488} a^{6} + \frac{1}{16} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{11904} a^{9} - \frac{1}{2976} a^{7} - \frac{3}{32} a^{5} - \frac{3}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{47616} a^{10} - \frac{1}{11904} a^{8} + \frac{1}{11904} a^{6} - \frac{3}{64} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{95232} a^{11} - \frac{1}{23808} a^{9} + \frac{1}{23808} a^{7} + \frac{13}{128} a^{5} - \frac{3}{16} a^{3}$, $\frac{1}{283410432} a^{12} - \frac{1}{253952} a^{10} + \frac{15}{253952} a^{8} - \frac{5}{126976} a^{6} + \frac{19}{256} a^{4} + \frac{9}{64} a^{2} + \frac{1}{8}$, $\frac{1}{566820864} a^{13} - \frac{1}{507904} a^{11} + \frac{15}{507904} a^{9} - \frac{5}{253952} a^{7} + \frac{19}{512} a^{5} - \frac{23}{128} a^{3} + \frac{1}{16} a$, $\frac{1}{11336417280} a^{14} + \frac{1}{2834104320} a^{12} - \frac{81}{10158080} a^{10} - \frac{309}{5079040} a^{8} + \frac{77}{952320} a^{6} - \frac{303}{2560} a^{4} + \frac{69}{320} a^{2} + \frac{3}{10}$, $\frac{1}{22672834560} a^{15} + \frac{1}{5668208640} a^{13} - \frac{81}{20316160} a^{11} - \frac{309}{10158080} a^{9} + \frac{77}{1904640} a^{7} + \frac{337}{5120} a^{5} - \frac{91}{640} a^{3} + \frac{3}{20} a$, $\frac{1}{49426779340800} a^{16} - \frac{7}{1372966092800} a^{14} + \frac{353}{494267793408} a^{12} - \frac{196661}{22144614400} a^{10} + \frac{235349}{4152115200} a^{8} + \frac{105571}{346009600} a^{6} + \frac{5077}{55808} a^{4} - \frac{1301}{10900} a^{2} + \frac{1389}{5450}$, $\frac{1}{98853558681600} a^{17} - \frac{7}{2745932185600} a^{15} + \frac{353}{988535586816} a^{13} - \frac{196661}{44289228800} a^{11} + \frac{235349}{8304230400} a^{9} + \frac{105571}{692019200} a^{7} - \frac{8875}{111616} a^{5} - \frac{1301}{21800} a^{3} - \frac{4061}{10900} a$
Class group and class number
$C_{2}\times C_{6}\times C_{342}\times C_{7182}$, which has order $29474928$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4617140.625511786 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-186}) \), \(\Q(\zeta_{9})^+\), 3.3.77841.1, 3.3.961.1, 3.3.77841.2, 6.0.300224641536.8, 6.0.288515880516096.2, 6.0.395769383424.3, 6.0.288515880516096.1, 9.9.471655843734321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||