Normalized defining polynomial
\( x^{18} - 6 x^{17} + 27 x^{16} - 98 x^{15} + 441 x^{14} - 1194 x^{13} + 3092 x^{12} - 8442 x^{11} + 21552 x^{10} - 23424 x^{9} + 91239 x^{8} - 177996 x^{7} + 55755 x^{6} - 228654 x^{5} + 1834899 x^{4} + 3117170 x^{3} + 7609494 x^{2} + 4744224 x + 4634713 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23845365740806374055553449712418816=-\,2^{27}\cdot 3^{27}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(936=2^{3}\cdot 3^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{936}(1,·)$, $\chi_{936}(581,·)$, $\chi_{936}(841,·)$, $\chi_{936}(269,·)$, $\chi_{936}(653,·)$, $\chi_{936}(913,·)$, $\chi_{936}(341,·)$, $\chi_{936}(601,·)$, $\chi_{936}(217,·)$, $\chi_{936}(29,·)$, $\chi_{936}(289,·)$, $\chi_{936}(677,·)$, $\chi_{936}(529,·)$, $\chi_{936}(365,·)$, $\chi_{936}(625,·)$, $\chi_{936}(53,·)$, $\chi_{936}(313,·)$, $\chi_{936}(893,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{212} a^{15} - \frac{15}{212} a^{14} + \frac{19}{212} a^{13} + \frac{17}{212} a^{12} - \frac{37}{212} a^{11} - \frac{29}{212} a^{10} + \frac{43}{212} a^{9} - \frac{29}{212} a^{8} - \frac{7}{106} a^{7} + \frac{11}{106} a^{6} - \frac{17}{53} a^{5} - \frac{31}{106} a^{4} + \frac{17}{212} a^{3} - \frac{37}{212} a^{2} - \frac{9}{212} a - \frac{21}{212}$, $\frac{1}{412900892923449957412} a^{16} + \frac{466182597906876253}{412900892923449957412} a^{15} + \frac{17357615771671590475}{206450446461724978706} a^{14} + \frac{19804506835678133257}{206450446461724978706} a^{13} - \frac{10077984408154379421}{412900892923449957412} a^{12} - \frac{30235241455941283031}{412900892923449957412} a^{11} + \frac{6226028962750323544}{103225223230862489353} a^{10} + \frac{31392673470413393997}{206450446461724978706} a^{9} - \frac{42765145845247041823}{206450446461724978706} a^{8} + \frac{20053758385054726643}{206450446461724978706} a^{7} - \frac{45611253147394622889}{206450446461724978706} a^{6} - \frac{1240857029422615203}{103225223230862489353} a^{5} - \frac{176804131786331899755}{412900892923449957412} a^{4} - \frac{116611739184352766199}{412900892923449957412} a^{3} - \frac{20795273052122474456}{103225223230862489353} a^{2} - \frac{35891914147663902813}{103225223230862489353} a - \frac{14346605368785333091}{103225223230862489353}$, $\frac{1}{5304283386863539501664252083508} a^{17} - \frac{1944500851}{5304283386863539501664252083508} a^{16} + \frac{390875682043349786674197473}{2652141693431769750832126041754} a^{15} + \frac{599507749336078807839725284033}{5304283386863539501664252083508} a^{14} + \frac{78699495697553321497406410589}{2652141693431769750832126041754} a^{13} - \frac{597523667732692492883179332095}{5304283386863539501664252083508} a^{12} - \frac{181511217884950130954027212402}{1326070846715884875416063020877} a^{11} - \frac{930888669211011899070412249737}{5304283386863539501664252083508} a^{10} + \frac{809148675946671149889810340567}{5304283386863539501664252083508} a^{9} - \frac{84712785420675795353641491417}{1326070846715884875416063020877} a^{8} - \frac{210886317686295403462766414495}{2652141693431769750832126041754} a^{7} - \frac{225804873025450273383889797159}{1326070846715884875416063020877} a^{6} - \frac{1486053811190990362318314156349}{5304283386863539501664252083508} a^{5} - \frac{2589494663599905602489574689875}{5304283386863539501664252083508} a^{4} + \frac{346085856236936053347024691692}{1326070846715884875416063020877} a^{3} - \frac{1038335077745632127648653567693}{5304283386863539501664252083508} a^{2} + \frac{1546457579909668887176341782761}{5304283386863539501664252083508} a + \frac{342276206284086585588168294821}{1326070846715884875416063020877}$
Class group and class number
$C_{2}\times C_{2}\times C_{3458}$, which has order $13832$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.136445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\zeta_{9})^+\), 3.3.13689.1, 3.3.13689.2, 3.3.169.1, 6.0.10077696.1, 6.0.287829075456.8, 6.0.287829075456.10, 6.0.394827264.1, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||