Normalized defining polynomial
\( x^{18} - 2 x^{17} + 3 x^{16} - 4 x^{15} + 6 x^{14} - 6 x^{13} + 4 x^{12} - 4 x^{9} + 3 x^{8} - 3 x^{7} + 6 x^{6} + 3 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-236549479975054182819=-\,3^{9}\cdot 23^{6}\cdot 433^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23, 433$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{201371} a^{17} - \frac{30920}{201371} a^{16} + \frac{76426}{201371} a^{15} - \frac{51758}{201371} a^{14} - \frac{41487}{201371} a^{13} - \frac{38210}{201371} a^{12} - \frac{66873}{201371} a^{11} - \frac{98014}{201371} a^{10} - \frac{35327}{201371} a^{9} + \frac{3878}{201371} a^{8} - \frac{84256}{201371} a^{7} + \frac{91749}{201371} a^{6} + \frac{17701}{201371} a^{5} + \frac{46863}{201371} a^{4} - \frac{45885}{201371} a^{3} + \frac{13739}{201371} a^{2} - \frac{90960}{201371} a - \frac{46106}{201371}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1059}{2549} a^{17} + \frac{4924}{2549} a^{16} - \frac{9482}{2549} a^{15} + \frac{13320}{2549} a^{14} - \frac{17674}{2549} a^{13} + \frac{21956}{2549} a^{12} - \frac{18203}{2549} a^{11} + \frac{4095}{2549} a^{10} + \frac{12365}{2549} a^{9} - \frac{13108}{2549} a^{8} + \frac{1908}{2549} a^{7} + \frac{591}{2549} a^{6} - \frac{5111}{2549} a^{5} + \frac{8760}{2549} a^{4} + \frac{5726}{2549} a^{3} - \frac{2458}{2549} a^{2} + \frac{7577}{2549} a + \frac{159}{2549} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1400.56581087 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_3\wr C_2$ (as 18T150):
| A solvable group of order 432 |
| The 27 conjugacy class representatives for $S_3\times S_3\wr C_2$ |
| Character table for $S_3\times S_3\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.23.1, 6.0.14283.1, 6.0.11691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 433 | Data not computed | ||||||