Properties

Label 18.0.23644104017...1443.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{27}\cdot 19^{6}\cdot 433^{6}$
Root discriminant $104.90$
Ramified primes $3, 19, 433$
Class number $2268$ (GRH)
Class group $[3, 6, 126]$ (GRH)
Galois group $C_3^2\times S_3$ (as 18T17)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29503629, 0, 0, -9113382, 0, 0, 1195381, 0, 0, -88794, 0, 0, 4015, 0, 0, -99, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 99*x^15 + 4015*x^12 - 88794*x^9 + 1195381*x^6 - 9113382*x^3 + 29503629)
 
gp: K = bnfinit(x^18 - 99*x^15 + 4015*x^12 - 88794*x^9 + 1195381*x^6 - 9113382*x^3 + 29503629, 1)
 

Normalized defining polynomial

\( x^{18} - 99 x^{15} + 4015 x^{12} - 88794 x^{9} + 1195381 x^{6} - 9113382 x^{3} + 29503629 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2364410401725013713261525524362981443=-\,3^{27}\cdot 19^{6}\cdot 433^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $104.90$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 19, 433$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{116741004478077} a^{15} - \frac{1095652928579}{38913668159359} a^{12} - \frac{43873157201564}{116741004478077} a^{9} + \frac{15959013908981}{38913668159359} a^{6} + \frac{55944712137502}{116741004478077} a^{3} + \frac{7945771449375}{38913668159359}$, $\frac{1}{36072970383725793} a^{16} - \frac{1881192512011878}{4008107820413977} a^{13} - \frac{10784045569184648}{36072970383725793} a^{10} - \frac{1693910504989016}{4008107820413977} a^{7} + \frac{17917318397283283}{36072970383725793} a^{4} + \frac{2648590483125}{4008107820413977} a$, $\frac{1}{3715515949523756679} a^{17} - \frac{29937947254909717}{412835105502639631} a^{14} + \frac{818894273256508591}{3715515949523756679} a^{11} + \frac{142597971029914156}{412835105502639631} a^{8} - \frac{1533220408102925816}{3715515949523756679} a^{5} + \frac{200408039611181975}{412835105502639631} a^{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{6}\times C_{126}$, which has order $2268$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1399594456412}{3715515949523756679} a^{17} - \frac{37789602473156}{1238505316507918893} a^{14} + \frac{3534026290733816}{3715515949523756679} a^{11} - \frac{19594091282051117}{1238505316507918893} a^{8} + \frac{598665922473269366}{3715515949523756679} a^{5} - \frac{661950517856055401}{1238505316507918893} a^{2} \) (order $18$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 605053346.8313098 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3^2\times S_3$ (as 18T17):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 54
The 27 conjugacy class representatives for $C_3^2\times S_3$
Character table for $C_3^2\times S_3$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 6.0.1827455283.2, 6.0.1332214901307.1, Deg 6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
433Data not computed