Normalized defining polynomial
\( x^{18} - 27 x^{15} - 126 x^{14} + 117 x^{12} + 1296 x^{11} + 5796 x^{10} + 2079 x^{9} + 2592 x^{8} - 2592 x^{7} - 71352 x^{6} + 4320 x^{5} + 20736 x^{4} - 25920 x^{3} + 331776 x^{2} - 138240 x + 38400 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23634501652406669589144000000000=-\,2^{12}\cdot 3^{45}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{16} a^{7} + \frac{1}{4} a^{5} - \frac{5}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{14} - \frac{3}{32} a^{11} + \frac{1}{16} a^{10} - \frac{3}{32} a^{8} - \frac{3}{8} a^{6} + \frac{7}{32} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{15} - \frac{3}{64} a^{12} + \frac{1}{32} a^{11} + \frac{13}{64} a^{9} + \frac{1}{16} a^{7} - \frac{9}{64} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8390912} a^{16} + \frac{3117}{1048864} a^{15} - \frac{3429}{2097728} a^{14} + \frac{92485}{8390912} a^{13} - \frac{242835}{4195456} a^{12} + \frac{4667}{2097728} a^{11} - \frac{156947}{8390912} a^{10} - \frac{204483}{1048864} a^{9} + \frac{10721}{262216} a^{8} + \frac{1984543}{8390912} a^{7} - \frac{23889}{1048864} a^{6} + \frac{282717}{2097728} a^{5} - \frac{370531}{1048864} a^{4} + \frac{22109}{524432} a^{3} - \frac{1769}{3592} a^{2} - \frac{152}{449} a + \frac{9965}{65554}$, $\frac{1}{708084545982364388724035428695040} a^{17} + \frac{1932508309536611761906573}{70808454598236438872403542869504} a^{16} - \frac{138471389969815944302334558723}{35404227299118219436201771434752} a^{15} - \frac{8825432931188039579749290508147}{708084545982364388724035428695040} a^{14} + \frac{2934005615457687072930246756551}{177021136495591097181008857173760} a^{13} - \frac{185508723850731861713212917133}{17702113649559109718100885717376} a^{12} - \frac{61304868723083636220535129232763}{708084545982364388724035428695040} a^{11} - \frac{14514985054246705153347155753107}{354042272991182194362017714347520} a^{10} - \frac{1666842822660096642747317586333}{88510568247795548590504428586880} a^{9} - \frac{155296684161824108929336841341201}{708084545982364388724035428695040} a^{8} - \frac{17330176004170949677416321393089}{354042272991182194362017714347520} a^{7} + \frac{56421357308442073583672699332967}{177021136495591097181008857173760} a^{6} + \frac{10324104563303831443134361674019}{22127642061948887147626107146720} a^{5} + \frac{687846614968657425988799036561}{4425528412389777429525221429344} a^{4} - \frac{4600235447377445747971578574011}{11063821030974443573813053573360} a^{3} + \frac{7783115483085391883991360689}{30311838441025872804967270064} a^{2} - \frac{1846465310316636121366068602983}{5531910515487221786906526786680} a + \frac{257432270814742919332863809401}{553191051548722178690652678668}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 787576192.9529331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.243.1, 6.0.22143375.1, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |