Normalized defining polynomial
\( x^{18} - 6 x^{17} + 19 x^{16} - 34 x^{15} + 42 x^{14} - 34 x^{13} + 20 x^{12} + 20 x^{11} - 97 x^{10} + 148 x^{9} - 131 x^{8} - 30 x^{7} + 251 x^{6} - 76 x^{5} - 53 x^{4} + 8 x^{3} + 11 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23465261991844685929951=-\,31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} + \frac{7}{16} a^{3} - \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} + \frac{1}{32} a^{6} - \frac{3}{16} a^{5} - \frac{1}{8} a^{4} - \frac{15}{32} a^{3} + \frac{15}{32} a^{2} - \frac{1}{16} a + \frac{15}{32}$, $\frac{1}{64} a^{14} + \frac{3}{64} a^{11} + \frac{1}{64} a^{10} + \frac{3}{64} a^{9} + \frac{1}{32} a^{8} - \frac{13}{64} a^{7} + \frac{7}{64} a^{6} - \frac{1}{32} a^{5} + \frac{5}{64} a^{4} + \frac{1}{8} a^{3} + \frac{29}{64} a^{2} + \frac{1}{64} a + \frac{19}{64}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} + \frac{3}{128} a^{12} + \frac{3}{64} a^{11} + \frac{1}{64} a^{10} + \frac{7}{128} a^{9} + \frac{1}{128} a^{8} - \frac{1}{32} a^{7} - \frac{25}{128} a^{6} - \frac{25}{128} a^{5} - \frac{29}{128} a^{4} - \frac{11}{128} a^{3} - \frac{3}{32} a^{2} - \frac{19}{64} a - \frac{3}{128}$, $\frac{1}{128} a^{16} - \frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{3}{128} a^{12} + \frac{1}{32} a^{11} + \frac{1}{128} a^{10} - \frac{1}{32} a^{9} - \frac{3}{128} a^{8} + \frac{11}{128} a^{7} + \frac{5}{64} a^{6} - \frac{7}{64} a^{5} + \frac{3}{16} a^{4} - \frac{43}{128} a^{3} - \frac{7}{64} a^{2} + \frac{15}{128} a + \frac{17}{128}$, $\frac{1}{482176} a^{17} - \frac{1767}{482176} a^{16} + \frac{41}{120544} a^{15} + \frac{1221}{482176} a^{14} - \frac{1679}{120544} a^{13} - \frac{567}{30136} a^{12} - \frac{7569}{482176} a^{11} - \frac{13685}{482176} a^{10} + \frac{341}{30136} a^{9} + \frac{31885}{482176} a^{8} - \frac{25083}{482176} a^{7} - \frac{60981}{482176} a^{6} + \frac{24525}{482176} a^{5} + \frac{6599}{60272} a^{4} - \frac{14187}{30136} a^{3} + \frac{155929}{482176} a^{2} - \frac{3397}{241088} a - \frac{75217}{241088}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2615.01137266 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.1.31.1 x3, 3.3.961.1, 6.0.29791.1, 6.0.28629151.1, 6.0.28629151.2 x2, 9.3.27512614111.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.28629151.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |