Normalized defining polynomial
\( x^{18} - 8 x^{17} + 34 x^{16} - 88 x^{15} + 175 x^{14} - 212 x^{13} + 180 x^{12} - 16 x^{11} - 153 x^{10} + 248 x^{9} - 210 x^{8} + 112 x^{7} + 55 x^{6} - 40 x^{5} + 94 x^{4} - 8 x^{3} + 34 x^{2} + 12 x + 6 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2340225081216495607873536=-\,2^{33}\cdot 3^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{12} - \frac{1}{2} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{36} a^{15} + \frac{1}{36} a^{14} - \frac{1}{18} a^{13} - \frac{2}{9} a^{12} + \frac{1}{3} a^{11} + \frac{1}{6} a^{10} - \frac{5}{18} a^{9} + \frac{2}{9} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} - \frac{7}{18} a^{3} - \frac{1}{18} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{108} a^{16} - \frac{1}{108} a^{15} + \frac{1}{54} a^{14} - \frac{1}{27} a^{13} + \frac{4}{27} a^{12} - \frac{1}{6} a^{11} + \frac{25}{54} a^{10} - \frac{11}{27} a^{9} - \frac{1}{108} a^{8} - \frac{5}{12} a^{7} - \frac{8}{27} a^{6} + \frac{8}{27} a^{5} - \frac{5}{54} a^{4} - \frac{5}{54} a^{3} + \frac{11}{54} a^{2} + \frac{1}{6} a + \frac{2}{9}$, $\frac{1}{97013231789004} a^{17} + \frac{316672096175}{97013231789004} a^{16} + \frac{322300213513}{48506615894502} a^{15} - \frac{4001968275611}{48506615894502} a^{14} - \frac{1979209230842}{24253307947251} a^{13} - \frac{123092124842}{8084435982417} a^{12} - \frac{8559165091295}{48506615894502} a^{11} - \frac{155943779711}{545018156118} a^{10} - \frac{22071994947445}{97013231789004} a^{9} - \frac{2751245254633}{32337743929668} a^{8} - \frac{9135409083335}{24253307947251} a^{7} - \frac{4736580850000}{24253307947251} a^{6} - \frac{20976567670979}{48506615894502} a^{5} - \frac{158416298839}{545018156118} a^{4} + \frac{20598615017531}{48506615894502} a^{3} + \frac{621431531465}{16168871964834} a^{2} + \frac{2126124233348}{8084435982417} a + \frac{794499137825}{2694811994139}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 168976.3636822919 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.1.1176.1 x3, 3.1.588.1, 6.0.132765696.1, 6.0.33191424.2, 9.1.78066229248.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.5 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.5 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.5 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |