Normalized defining polynomial
\( x^{18} + 185 x^{16} + 12950 x^{14} + 439375 x^{12} + 7677500 x^{10} + 69375000 x^{8} + 323171875 x^{6} + 725546875 x^{4} + 621484375 x^{2} + 72265625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-233721825702929999566923221504000000000=-\,2^{18}\cdot 5^{9}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(740=2^{2}\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{740}(1,·)$, $\chi_{740}(619,·)$, $\chi_{740}(581,·)$, $\chi_{740}(641,·)$, $\chi_{740}(201,·)$, $\chi_{740}(139,·)$, $\chi_{740}(81,·)$, $\chi_{740}(659,·)$, $\chi_{740}(121,·)$, $\chi_{740}(601,·)$, $\chi_{740}(539,·)$, $\chi_{740}(159,·)$, $\chi_{740}(99,·)$, $\chi_{740}(299,·)$, $\chi_{740}(559,·)$, $\chi_{740}(181,·)$, $\chi_{740}(739,·)$, $\chi_{740}(441,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{3125} a^{10}$, $\frac{1}{3125} a^{11}$, $\frac{1}{15625} a^{12}$, $\frac{1}{15625} a^{13}$, $\frac{1}{3359375} a^{14} + \frac{14}{134375} a^{10} - \frac{13}{26875} a^{8} - \frac{2}{1075} a^{6} + \frac{11}{1075} a^{4} - \frac{11}{215} a^{2} - \frac{21}{43}$, $\frac{1}{3359375} a^{15} + \frac{14}{134375} a^{11} - \frac{13}{26875} a^{9} - \frac{2}{1075} a^{7} + \frac{11}{1075} a^{5} - \frac{11}{215} a^{3} - \frac{21}{43} a$, $\frac{1}{1081764387109375} a^{16} + \frac{6296957}{43270575484375} a^{14} - \frac{237263789}{8654115096875} a^{12} + \frac{5680566}{1730823019375} a^{10} + \frac{454901551}{1730823019375} a^{8} + \frac{552171309}{346164603875} a^{6} - \frac{1045941801}{69232920775} a^{4} - \frac{852680188}{13846584155} a^{2} - \frac{7266499}{2769316831}$, $\frac{1}{1081764387109375} a^{17} + \frac{6296957}{43270575484375} a^{15} - \frac{237263789}{8654115096875} a^{13} + \frac{5680566}{1730823019375} a^{11} + \frac{454901551}{1730823019375} a^{9} + \frac{552171309}{346164603875} a^{7} - \frac{1045941801}{69232920775} a^{5} - \frac{852680188}{13846584155} a^{3} - \frac{7266499}{2769316831} a$
Class group and class number
$C_{2}\times C_{613928}$, which has order $1227856$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.3102125697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-185}) \), 3.3.1369.1, 6.0.554751656000.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||