Normalized defining polynomial
\( x^{18} - 9 x^{17} + 12 x^{16} + 32 x^{15} + 1686 x^{14} - 9846 x^{13} + 49286 x^{12} - 22440 x^{11} + 1331088 x^{10} - 4191132 x^{9} + 33730047 x^{8} - 34322004 x^{7} + 527869077 x^{6} - 1067345487 x^{5} + 7933667079 x^{4} - 8669431748 x^{3} + 68468181699 x^{2} - 104866576881 x + 427034554111 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23325000591813882581633268226911166306572831=-\,3^{27}\cdot 13^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $256.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2223=3^{2}\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2223}(1600,·)$, $\chi_{2223}(1,·)$, $\chi_{2223}(196,·)$, $\chi_{2223}(389,·)$, $\chi_{2223}(2183,·)$, $\chi_{2223}(1676,·)$, $\chi_{2223}(272,·)$, $\chi_{2223}(1873,·)$, $\chi_{2223}(467,·)$, $\chi_{2223}(662,·)$, $\chi_{2223}(1052,·)$, $\chi_{2223}(157,·)$, $\chi_{2223}(235,·)$, $\chi_{2223}(1327,·)$, $\chi_{2223}(625,·)$, $\chi_{2223}(818,·)$, $\chi_{2223}(1715,·)$, $\chi_{2223}(313,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{33} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{4}{11} a$, $\frac{1}{33} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{4}{11} a^{2} + \frac{1}{3}$, $\frac{1}{33} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{4}{11} a^{3} + \frac{1}{3} a$, $\frac{1}{33} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{4}{11} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{99} a^{15} - \frac{1}{99} a^{14} - \frac{1}{99} a^{13} + \frac{1}{99} a^{12} - \frac{1}{99} a^{11} - \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{9} a^{6} + \frac{32}{99} a^{5} + \frac{34}{99} a^{4} + \frac{23}{99} a^{3} - \frac{5}{11} a^{2} - \frac{32}{99} a - \frac{4}{9}$, $\frac{1}{36543615471} a^{16} - \frac{170838077}{36543615471} a^{15} + \frac{548522}{369127429} a^{14} + \frac{499544246}{36543615471} a^{13} + \frac{360668725}{36543615471} a^{12} - \frac{37243498}{3322146861} a^{11} + \frac{12106371}{369127429} a^{10} + \frac{510340643}{3322146861} a^{9} - \frac{99345881}{302013351} a^{8} - \frac{27802715}{100671117} a^{7} - \frac{1369196746}{4060401719} a^{6} - \frac{17074787551}{36543615471} a^{5} - \frac{1081319005}{3322146861} a^{4} + \frac{8508910396}{36543615471} a^{3} + \frac{6230768116}{36543615471} a^{2} - \frac{384359738}{1107382287} a - \frac{23316835}{302013351}$, $\frac{1}{2822190213605192588704621818420776255028072733849957816229693739} a^{17} + \frac{26362975743979181493731481553764237363510318874504559}{2822190213605192588704621818420776255028072733849957816229693739} a^{16} + \frac{550291795975491778104063440693282284612620481266868233142151}{940730071201730862901540606140258751676024244616652605409897913} a^{15} - \frac{11059152897189836352755279996661132213599892425606191097349983}{940730071201730862901540606140258751676024244616652605409897913} a^{14} - \frac{595389895354726833877979548322371699304350090261911752150872}{256562746691381144427692892583706932275279339440905256020881249} a^{13} + \frac{20671164979035161258603460521509825620792841983938700543565087}{2822190213605192588704621818420776255028072733849957816229693739} a^{12} + \frac{618700299383649374616017955795172224780097581126914582675386}{256562746691381144427692892583706932275279339440905256020881249} a^{11} + \frac{35554478556508516306590754422326213206001279951121987864207410}{256562746691381144427692892583706932275279339440905256020881249} a^{10} - \frac{6440927251260394212046061377740984434474806273435103587288046}{256562746691381144427692892583706932275279339440905256020881249} a^{9} - \frac{710420796936402476494460236167503121222279607399059773388887}{2591542895872536812400938308926332649245245852938436929503851} a^{8} + \frac{606180189453317707143670897912567406949576710879848298125485247}{2822190213605192588704621818420776255028072733849957816229693739} a^{7} + \frac{58374701628446014035928951018721690142023371396513265747023001}{940730071201730862901540606140258751676024244616652605409897913} a^{6} + \frac{907636160369144736514141140830568433397482889243515122214146010}{2822190213605192588704621818420776255028072733849957816229693739} a^{5} - \frac{541194059749128803748083375568626672151564343547264592013063589}{2822190213605192588704621818420776255028072733849957816229693739} a^{4} + \frac{11010643061583654076012447364630287696457556079249386644534045}{28506971854597904936410321398189659141697704382322806224542361} a^{3} - \frac{35318154735639953039114303547422321295057084804960205815259145}{2822190213605192588704621818420776255028072733849957816229693739} a^{2} + \frac{63857567780644415113871920283663082782283444704196244733554544}{256562746691381144427692892583706932275279339440905256020881249} a - \frac{10290728782441140086297258317969743430530668780722366051342664}{23323886062852831311608444780336993843207212676445932365534659}$
Class group and class number
$C_{19}\times C_{1323084}$, which has order $25138596$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15010229.973756868 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.361.1, 6.0.7730511399.2, 9.9.9025761726072081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | R | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| 19 | Data not computed | ||||||