Normalized defining polynomial
\( x^{18} + 75 x^{16} - 76 x^{15} + 6471 x^{14} + 409951 x^{12} + 501372 x^{11} + 21240672 x^{10} + 32240074 x^{9} + 787133106 x^{8} + 1165841862 x^{7} + 21242025193 x^{6} + 22617048924 x^{5} + 398164960137 x^{4} + 246611628030 x^{3} + 4852747373220 x^{2} + 345736733040 x + 30985776501229 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23267717097701665308512958392073692044388990976=-\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $376.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(3275,·)$, $\chi_{4788}(2183,·)$, $\chi_{4788}(841,·)$, $\chi_{4788}(3863,·)$, $\chi_{4788}(1681,·)$, $\chi_{4788}(1429,·)$, $\chi_{4788}(2519,·)$, $\chi_{4788}(1175,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(3361,·)$, $\chi_{4788}(4451,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(2353,·)$, $\chi_{4788}(2099,·)$, $\chi_{4788}(3445,·)$, $\chi_{4788}(1847,·)$, $\chi_{4788}(505,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{33} a^{10} - \frac{1}{33} a^{9} + \frac{4}{11} a^{8} + \frac{10}{33} a^{7} - \frac{10}{33} a^{6} - \frac{4}{11} a^{5} + \frac{4}{11} a^{4} - \frac{4}{11} a^{3} + \frac{4}{11} a^{2} - \frac{1}{33} a - \frac{1}{3}$, $\frac{1}{33} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{2} - \frac{4}{11} a$, $\frac{1}{33} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{4}{11} a^{2} - \frac{1}{3}$, $\frac{1}{33} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{4}{11} a^{3} - \frac{1}{3} a$, $\frac{1}{33} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{4}{11} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{113553} a^{15} - \frac{1630}{113553} a^{14} - \frac{1196}{113553} a^{13} - \frac{523}{113553} a^{12} + \frac{419}{37851} a^{11} - \frac{920}{113553} a^{10} + \frac{14252}{113553} a^{9} - \frac{53555}{113553} a^{8} - \frac{3496}{12617} a^{7} - \frac{17650}{37851} a^{6} - \frac{27428}{113553} a^{5} + \frac{23183}{113553} a^{4} + \frac{6692}{113553} a^{3} - \frac{34288}{113553} a^{2} - \frac{11138}{37851} a - \frac{68}{333}$, $\frac{1}{1132852079601} a^{16} - \frac{332033}{1132852079601} a^{15} + \frac{9522607538}{1132852079601} a^{14} - \frac{14909769950}{1132852079601} a^{13} - \frac{7268085194}{1132852079601} a^{12} - \frac{10234087115}{1132852079601} a^{11} - \frac{13601243951}{1132852079601} a^{10} - \frac{37593960967}{1132852079601} a^{9} - \frac{277412722750}{1132852079601} a^{8} + \frac{140625445150}{377617359867} a^{7} - \frac{339572428469}{1132852079601} a^{6} - \frac{467066565068}{1132852079601} a^{5} + \frac{48789716691}{125872453289} a^{4} - \frac{18491201371}{377617359867} a^{3} + \frac{4940681443}{30617623773} a^{2} - \frac{282702230572}{1132852079601} a - \frac{159043792}{3322146861}$, $\frac{1}{5084405970395203476884011187683908799166059962423522656975811654417} a^{17} - \frac{266871233333532561695364694752080196177806207983744780}{1694801990131734492294670395894636266388686654141174218991937218139} a^{16} - \frac{17152499800322205803308014846327010985675110408354464751692133}{5084405970395203476884011187683908799166059962423522656975811654417} a^{15} - \frac{6424197534210994195233812371329568833776681530926083649736596238}{462218724581382134262182835243991709015096360220320241543255604947} a^{14} - \frac{64597358223675357170112434509690702710571779350930722325592175451}{5084405970395203476884011187683908799166059962423522656975811654417} a^{13} - \frac{71352155817884030898670707700814064265531024870755624314659433587}{5084405970395203476884011187683908799166059962423522656975811654417} a^{12} - \frac{2048281941696565870523910230728470713385500747858176140046693179}{564933996710578164098223465298212088796228884713724739663979072713} a^{11} - \frac{18000531438530520824265739312458592419582148298048347310823267052}{5084405970395203476884011187683908799166059962423522656975811654417} a^{10} - \frac{731542523649154904511617817101866824297108518957873082035335811266}{5084405970395203476884011187683908799166059962423522656975811654417} a^{9} + \frac{2223506736587121740250330142839044544230682583368942499069525692728}{5084405970395203476884011187683908799166059962423522656975811654417} a^{8} - \frac{1887951160866572167288033690231197552684465461113680569003431903385}{5084405970395203476884011187683908799166059962423522656975811654417} a^{7} + \frac{75682151031332781190789718475595824558076672906065337037943193441}{1694801990131734492294670395894636266388686654141174218991937218139} a^{6} + \frac{13636813712338919252952851293864628987051162318362967666556234455}{51357636064598014918020315027110189890566262246702249060361733883} a^{5} + \frac{137105731574219844172123561061564620230555396963162615874072220006}{5084405970395203476884011187683908799166059962423522656975811654417} a^{4} + \frac{46364371610719392813404087975226878642233900628866795222954394638}{154072908193794044754060945081330569671698786740106747181085201649} a^{3} + \frac{287210754441081289700318777944202880360061823082297367618507274131}{1694801990131734492294670395894636266388686654141174218991937218139} a^{2} - \frac{1731607789865658468263857811141087723203759181642678075813787639130}{5084405970395203476884011187683908799166059962423522656975811654417} a - \frac{5081484371634156052452911030082249865724647185779607430423311511}{14910281438109101105231704362709409968228914845816781985266309837}$
Class group and class number
$C_{2}\times C_{2}\times C_{12}\times C_{55575756}$, which has order $2667636288$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15010229.973756868 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.361.1, 6.0.77241777984.6, 9.9.9025761726072081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |