Normalized defining polynomial
\( x^{18} + 75 x^{16} - 76 x^{15} + 6471 x^{14} + 2052 x^{13} + 413371 x^{12} + 107388 x^{11} + 20079240 x^{10} + 13599706 x^{9} + 775572138 x^{8} + 779478990 x^{7} + 21570475153 x^{6} + 26380180944 x^{5} + 434832004497 x^{4} + 584216479326 x^{3} + 5532391423872 x^{2} + 5208110998344 x + 29491760233189 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23267717097701665308512958392073692044388990976=-\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $376.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(3275,·)$, $\chi_{4788}(2437,·)$, $\chi_{4788}(587,·)$, $\chi_{4788}(4621,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(85,·)$, $\chi_{4788}(2519,·)$, $\chi_{4788}(4367,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(1849,·)$, $\chi_{4788}(2855,·)$, $\chi_{4788}(169,·)$, $\chi_{4788}(3949,·)$, $\chi_{4788}(3695,·)$, $\chi_{4788}(3443,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(671,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{21} a^{10} + \frac{2}{21} a^{9} + \frac{1}{7} a^{8} + \frac{4}{21} a^{7} + \frac{5}{21} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{2}{21} a + \frac{1}{21}$, $\frac{1}{21} a^{11} - \frac{1}{21} a^{9} - \frac{2}{21} a^{8} - \frac{1}{7} a^{7} - \frac{4}{21} a^{6} - \frac{2}{7} a^{4} + \frac{3}{7} a^{3} - \frac{4}{21} a^{2} - \frac{1}{7} a - \frac{2}{21}$, $\frac{1}{147} a^{12} - \frac{2}{147} a^{11} - \frac{1}{49} a^{10} + \frac{17}{147} a^{9} - \frac{5}{147} a^{8} - \frac{23}{49} a^{7} + \frac{61}{147} a^{6} + \frac{22}{49} a^{5} + \frac{13}{49} a^{4} - \frac{16}{147} a^{3} + \frac{41}{147} a^{2} + \frac{1}{7} a - \frac{19}{147}$, $\frac{1}{5439} a^{13} + \frac{13}{5439} a^{12} - \frac{110}{5439} a^{11} + \frac{2}{259} a^{10} - \frac{905}{5439} a^{9} - \frac{1691}{5439} a^{8} - \frac{169}{5439} a^{7} - \frac{107}{1813} a^{6} - \frac{57}{259} a^{5} + \frac{401}{5439} a^{4} - \frac{1984}{5439} a^{3} + \frac{2036}{5439} a^{2} - \frac{2567}{5439} a - \frac{16}{49}$, $\frac{1}{38073} a^{14} + \frac{1}{38073} a^{13} - \frac{1}{5439} a^{12} - \frac{64}{12691} a^{11} + \frac{404}{38073} a^{10} + \frac{5284}{38073} a^{9} - \frac{9403}{38073} a^{8} + \frac{13621}{38073} a^{7} - \frac{6151}{38073} a^{6} + \frac{3887}{38073} a^{5} - \frac{2911}{38073} a^{4} - \frac{17}{777} a^{3} + \frac{139}{5439} a^{2} + \frac{10121}{38073} a + \frac{226}{1029}$, $\frac{1}{114219} a^{15} - \frac{1}{114219} a^{14} - \frac{2}{114219} a^{13} - \frac{346}{114219} a^{12} + \frac{261}{12691} a^{11} + \frac{1921}{114219} a^{10} - \frac{2056}{16317} a^{9} - \frac{30692}{114219} a^{8} - \frac{4072}{12691} a^{7} - \frac{13310}{38073} a^{6} - \frac{19841}{114219} a^{5} + \frac{19451}{114219} a^{4} - \frac{367}{2331} a^{3} + \frac{31751}{114219} a^{2} - \frac{3302}{38073} a + \frac{521}{3087}$, $\frac{1}{480519333} a^{16} + \frac{1916}{480519333} a^{15} + \frac{6175}{480519333} a^{14} + \frac{25838}{480519333} a^{13} - \frac{8165}{3268839} a^{12} - \frac{1555217}{68645619} a^{11} - \frac{1490011}{68645619} a^{10} + \frac{16054774}{480519333} a^{9} + \frac{20157671}{53391037} a^{8} + \frac{39382919}{160173111} a^{7} + \frac{135994897}{480519333} a^{6} + \frac{3831938}{480519333} a^{5} - \frac{159644866}{480519333} a^{4} + \frac{50109674}{480519333} a^{3} - \frac{2539766}{22881873} a^{2} + \frac{112289882}{480519333} a + \frac{1696378}{4329003}$, $\frac{1}{84099196868999726900542715725934931012124918215458406661330728211539} a^{17} - \frac{19176551359533999320628286449678738824987509263067930839767}{84099196868999726900542715725934931012124918215458406661330728211539} a^{16} + \frac{235253947992459374406835117170450768954273715576125639815502710}{84099196868999726900542715725934931012124918215458406661330728211539} a^{15} + \frac{474143943302389880088764270562638735812949999703602814632980501}{84099196868999726900542715725934931012124918215458406661330728211539} a^{14} + \frac{7409637965996755840266876113227483539121581867078750211260304207}{84099196868999726900542715725934931012124918215458406661330728211539} a^{13} + \frac{6225619168210543012770981785516587161983496830408105028608355625}{12014170981285675271506102246562133001732131173636915237332961173077} a^{12} - \frac{40519636791316295860826592329566505067565987095347793531961036163}{12014170981285675271506102246562133001732131173636915237332961173077} a^{11} - \frac{92387413324614944210073723523607653761556558828215849865516071742}{84099196868999726900542715725934931012124918215458406661330728211539} a^{10} + \frac{13030508177127397784390087790210338563929737288922477879993183375656}{84099196868999726900542715725934931012124918215458406661330728211539} a^{9} - \frac{3354232339185884153539690075194097588341009315637820832401713229245}{28033065622999908966847571908644977004041639405152802220443576070513} a^{8} - \frac{6828779413576617917933776438019662156131116704863619063259327015813}{84099196868999726900542715725934931012124918215458406661330728211539} a^{7} - \frac{40468938312832849271759727388604277584626879765900378973533495467554}{84099196868999726900542715725934931012124918215458406661330728211539} a^{6} + \frac{2310932117360816620113980372793220601889114710592382771000611687596}{9344355207666636322282523969548325668013879801717600740147858690171} a^{5} - \frac{858532842044415997833284680643708103718826690991763399549843408412}{28033065622999908966847571908644977004041639405152802220443576070513} a^{4} + \frac{29188313151299954993357567519267543143025862342042903127842467468842}{84099196868999726900542715725934931012124918215458406661330728211539} a^{3} - \frac{36490711107694215648575501741755314686639425156629445076855035931890}{84099196868999726900542715725934931012124918215458406661330728211539} a^{2} - \frac{32430618893456979703255241865775110862391167387309577777968788661229}{84099196868999726900542715725934931012124918215458406661330728211539} a - \frac{109222089894744823043511543445878162724174290521387649200040683056}{757650422243240782887772213747161540649774037977102762714691245149}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{296172}$, which has order $909840384$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22027035.20428972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.361.1, 6.0.77241777984.6, 9.9.9025761726072081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |