Normalized defining polynomial
\( x^{18} - 7 x^{17} + 210 x^{16} - 1186 x^{15} + 20051 x^{14} - 95635 x^{13} + 1171102 x^{12} - 4806923 x^{11} + 46317994 x^{10} - 163118347 x^{9} + 1278014562 x^{8} - 3772636223 x^{7} + 24313306146 x^{6} - 57241530331 x^{5} + 303026115883 x^{4} - 513902613356 x^{3} + 2204925392350 x^{2} - 2062907686453 x + 6965060119081 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23264650494782882410421125533525848000000000=-\,2^{12}\cdot 5^{9}\cdot 19^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $256.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{17} + \frac{204295637438092635762028174754535836080316298073346823206532845355191}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{16} + \frac{882389008722369795622469247081593169725974418013905615234668551929147}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{15} - \frac{39100371126197010087229097670965884831575920363037412437531045567809}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{14} + \frac{860079754026636032982053621789589882332296888058937763817539495114813}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{13} + \frac{923534264391341077419438423775173975792287439691718441122546392328334}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{12} - \frac{34499656099555775781985109771422110808913796077966299768195375875338}{2278463420681137276676861262149653549249755181700776187351104271378843} a^{11} - \frac{1552513654891391803042924313087615471018226396052593433172861267387374}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{10} - \frac{183801523067480552606022618930167718395312426484630089963136336916061}{2278463420681137276676861262149653549249755181700776187351104271378843} a^{9} + \frac{1632841180438677537837732929603726381815085278636709274051053026748615}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{8} - \frac{704849068575832244498561951061476574864630030583276789523832634767677}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{7} - \frac{2163294812067800380563431793900488826461844992164964072837558889590378}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{6} + \frac{3160212872409911279543512340235523711124459641790749062884973889667189}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{5} - \frac{1630264824549743110235561088364500740008972492921376959673984779493573}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{4} + \frac{904451826459100518679682644050920159639875597481554886006513420291964}{2278463420681137276676861262149653549249755181700776187351104271378843} a^{3} - \frac{852191508454344621245397448390132206312872653631204853877311241505246}{6835390262043411830030583786448960647749265545102328562053312814136529} a^{2} + \frac{689038322542321528397420058636308418273265920472575922568248372465308}{2278463420681137276676861262149653549249755181700776187351104271378843} a + \frac{612695738631872483377629435124637756632728253949775094293386584599952}{2278463420681137276676861262149653549249755181700776187351104271378843}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{12}\times C_{820872}$, which has order $236411136$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-95}) \), 3.3.148.1, 3.3.1369.1, 6.0.18779942000.2, 6.0.1606858787375.3, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.12.6.1 | $x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |