Normalized defining polynomial
\( x^{18} - 21 x^{16} - 6 x^{15} + 240 x^{14} - 216 x^{13} - 846 x^{12} + 2148 x^{11} + 2037 x^{10} - 12424 x^{9} + 2787 x^{8} + 32706 x^{7} - 12422 x^{6} - 2592 x^{5} + 218880 x^{4} + 247136 x^{3} + 7968 x^{2} - 96768 x + 25088 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-232360475811152994149020729344=-\,2^{18}\cdot 3^{24}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{16} a^{5} + \frac{1}{16} a^{4} - \frac{3}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{3}{32} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{10} + \frac{1}{64} a^{8} + \frac{1}{16} a^{7} + \frac{1}{64} a^{6} + \frac{1}{8} a^{5} - \frac{5}{32} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{1}{128} a^{11} - \frac{3}{128} a^{10} - \frac{1}{128} a^{9} + \frac{7}{128} a^{8} + \frac{7}{128} a^{7} - \frac{5}{128} a^{6} - \frac{1}{8} a^{5} - \frac{11}{64} a^{4} - \frac{3}{16} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{1024} a^{14} - \frac{1}{512} a^{13} - \frac{3}{512} a^{12} + \frac{3}{256} a^{11} + \frac{5}{512} a^{10} + \frac{3}{128} a^{9} + \frac{7}{128} a^{8} - \frac{23}{256} a^{7} - \frac{19}{1024} a^{6} + \frac{117}{512} a^{5} - \frac{25}{512} a^{4} + \frac{29}{64} a^{3} + \frac{1}{128} a^{2} - \frac{3}{8}$, $\frac{1}{3072} a^{15} + \frac{1}{512} a^{13} - \frac{1}{192} a^{12} + \frac{3}{512} a^{11} + \frac{5}{256} a^{10} - \frac{1}{384} a^{9} - \frac{5}{256} a^{8} + \frac{87}{1024} a^{7} + \frac{13}{768} a^{6} + \frac{43}{512} a^{5} - \frac{47}{256} a^{4} + \frac{63}{128} a^{3} + \frac{3}{64} a^{2} - \frac{3}{8} a + \frac{5}{12}$, $\frac{1}{71786496} a^{16} - \frac{9181}{71786496} a^{15} + \frac{725}{11964416} a^{14} + \frac{66169}{35893248} a^{13} + \frac{207209}{35893248} a^{12} + \frac{176803}{11964416} a^{11} - \frac{559817}{17946624} a^{10} - \frac{305029}{17946624} a^{9} + \frac{543067}{23928832} a^{8} - \frac{5253629}{71786496} a^{7} + \frac{2593243}{35893248} a^{6} - \frac{2281189}{11964416} a^{5} + \frac{142861}{5982208} a^{4} - \frac{557397}{2991104} a^{3} + \frac{526453}{1495552} a^{2} - \frac{63323}{560832} a - \frac{31781}{280416}$, $\frac{1}{3726405764849961178202112} a^{17} + \frac{94852965195405}{177447893564283865628672} a^{16} - \frac{1804351706794124633}{33271480043303224805376} a^{15} + \frac{702454677611579322091}{1863202882424980589101056} a^{14} + \frac{259802002409289199445}{621067627474993529700352} a^{13} - \frac{8023179555997456206905}{1863202882424980589101056} a^{12} + \frac{315972312304651583683}{20252205243749789011968} a^{11} - \frac{8003475331819971742777}{310533813737496764850176} a^{10} - \frac{5994303606082694623169}{532343680692851596886016} a^{9} - \frac{197530230799245903782159}{3726405764849961178202112} a^{8} - \frac{6067235463182335345241}{155266906868748382425088} a^{7} - \frac{45611679067901612799013}{1863202882424980589101056} a^{6} - \frac{17516337884597352960781}{155266906868748382425088} a^{5} + \frac{5540347585569748069029}{77633453434374191212544} a^{4} + \frac{17190188468173047723751}{38816726717187095606272} a^{3} - \frac{2104432036386343169045}{6128956850082172990464} a^{2} - \frac{1103412076872657624013}{2426045419824193475392} a + \frac{481169290458505282855}{1039733751353225775168}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{484198787}{15005512531968} a^{17} - \frac{48339481}{49303826890752} a^{16} - \frac{8308966417}{12325956722688} a^{15} - \frac{28303159253}{172563394117632} a^{14} + \frac{1320018632279}{172563394117632} a^{13} - \frac{1272056219425}{172563394117632} a^{12} - \frac{139000120829}{5392606066176} a^{11} + \frac{6107046710141}{86281697058816} a^{10} + \frac{2602428598955}{49303826890752} a^{9} - \frac{133373786940047}{345126788235264} a^{8} + \frac{11612755259687}{86281697058816} a^{7} + \frac{163220200521067}{172563394117632} a^{6} - \frac{1767534386351}{3595070710784} a^{5} + \frac{2722035821}{7076910848} a^{4} + \frac{1512704741145}{224691919424} a^{3} + \frac{4224112772533}{567642743808} a^{2} + \frac{74368467569}{42129734892} a - \frac{124168107439}{96296536896} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1166308755.75 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.39204.2 x3, 3.1.39204.1 x3, 3.1.324.1 x3, 3.1.484.1 x3, 6.0.6147814464.2, 6.0.6147814464.1, 6.0.419904.2, 6.0.937024.1, 9.1.241018918246656.6 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |