Properties

Label 18.0.23221826508...0000.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{33}\cdot 5^{9}\cdot 7^{12}$
Root discriminant $29.16$
Ramified primes $2, 5, 7$
Class number $18$ (GRH)
Class group $[3, 6]$ (GRH)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1000, 0, 1400, 0, 3290, 0, 3289, 0, 1876, 0, 994, 0, 310, 0, 77, 0, 14, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 14*x^16 + 77*x^14 + 310*x^12 + 994*x^10 + 1876*x^8 + 3289*x^6 + 3290*x^4 + 1400*x^2 + 1000)
 
gp: K = bnfinit(x^18 + 14*x^16 + 77*x^14 + 310*x^12 + 994*x^10 + 1876*x^8 + 3289*x^6 + 3290*x^4 + 1400*x^2 + 1000, 1)
 

Normalized defining polynomial

\( x^{18} + 14 x^{16} + 77 x^{14} + 310 x^{12} + 994 x^{10} + 1876 x^{8} + 3289 x^{6} + 3290 x^{4} + 1400 x^{2} + 1000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-232218265089212416000000000=-\,2^{33}\cdot 5^{9}\cdot 7^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} - \frac{3}{11} a^{10} + \frac{3}{11} a^{8} - \frac{1}{11} a^{6} - \frac{3}{11} a^{2} + \frac{4}{11}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{11} + \frac{3}{11} a^{9} - \frac{1}{11} a^{7} - \frac{3}{11} a^{3} + \frac{4}{11} a$, $\frac{1}{990} a^{14} - \frac{1}{165} a^{12} - \frac{263}{990} a^{10} + \frac{32}{99} a^{8} + \frac{7}{495} a^{6} - \frac{172}{495} a^{4} - \frac{47}{330} a^{2} + \frac{1}{99}$, $\frac{1}{990} a^{15} - \frac{1}{165} a^{13} - \frac{263}{990} a^{11} + \frac{32}{99} a^{9} + \frac{7}{495} a^{7} - \frac{172}{495} a^{5} - \frac{47}{330} a^{3} + \frac{1}{99} a$, $\frac{1}{163233605700} a^{16} + \frac{11622151}{40808401425} a^{14} + \frac{6390397837}{163233605700} a^{12} + \frac{34586329}{247323645} a^{10} - \frac{17925612403}{81616802850} a^{8} + \frac{657454678}{13602800475} a^{6} - \frac{15733188071}{163233605700} a^{4} + \frac{570863272}{1632336057} a^{2} + \frac{507209797}{1632336057}$, $\frac{1}{163233605700} a^{17} + \frac{11622151}{40808401425} a^{15} + \frac{6390397837}{163233605700} a^{13} + \frac{34586329}{247323645} a^{11} - \frac{17925612403}{81616802850} a^{9} + \frac{657454678}{13602800475} a^{7} - \frac{15733188071}{163233605700} a^{5} + \frac{570863272}{1632336057} a^{3} + \frac{507209797}{1632336057} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 34883.98422806271 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_3$ (as 18T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{-10}) \), 3.1.980.1, \(\Q(\zeta_{7})^+\), 6.0.614656000.1, 6.0.153664000.1, 9.3.941192000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.9.7$x^{6} + 4 x^{4} + 4 x^{2} - 24$$2$$3$$9$$C_6$$[3]^{3}$
2.12.24.318$x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
$5$5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e3_5.2t1.2c1$1$ $ 2^{3} \cdot 5 $ $x^{2} + 10$ $C_2$ (as 2T1) $1$ $-1$
1.2e2_5.2t1.1c1$1$ $ 2^{2} \cdot 5 $ $x^{2} + 5$ $C_2$ (as 2T1) $1$ $-1$
1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
1.2e3_7.6t1.2c1$1$ $ 2^{3} \cdot 7 $ $x^{6} - 10 x^{4} + 24 x^{2} - 8$ $C_6$ (as 6T1) $0$ $1$
* 1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
* 1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.2e2_5_7.6t1.2c1$1$ $ 2^{2} \cdot 5 \cdot 7 $ $x^{6} - 2 x^{5} + 12 x^{4} - 14 x^{3} + 87 x^{2} - 64 x + 281$ $C_6$ (as 6T1) $0$ $-1$
* 1.2e3_5_7.6t1.3c1$1$ $ 2^{3} \cdot 5 \cdot 7 $ $x^{6} - 2 x^{5} + 27 x^{4} - 34 x^{3} + 322 x^{2} - 224 x + 1561$ $C_6$ (as 6T1) $0$ $-1$
1.2e2_5_7.6t1.2c2$1$ $ 2^{2} \cdot 5 \cdot 7 $ $x^{6} - 2 x^{5} + 12 x^{4} - 14 x^{3} + 87 x^{2} - 64 x + 281$ $C_6$ (as 6T1) $0$ $-1$
1.2e3_7.6t1.2c2$1$ $ 2^{3} \cdot 7 $ $x^{6} - 10 x^{4} + 24 x^{2} - 8$ $C_6$ (as 6T1) $0$ $1$
* 1.2e3_5_7.6t1.3c2$1$ $ 2^{3} \cdot 5 \cdot 7 $ $x^{6} - 2 x^{5} + 27 x^{4} - 34 x^{3} + 322 x^{2} - 224 x + 1561$ $C_6$ (as 6T1) $0$ $-1$
* 2.2e2_5_7e2.3t2.1c1$2$ $ 2^{2} \cdot 5 \cdot 7^{2}$ $x^{3} - x^{2} + 5 x - 13$ $S_3$ (as 3T2) $1$ $0$
* 2.2e6_5_7e2.6t3.5c1$2$ $ 2^{6} \cdot 5 \cdot 7^{2}$ $x^{6} - 6 x^{4} - 16 x^{2} + 160$ $D_{6}$ (as 6T3) $1$ $0$
* 2.2e6_5_7.12t18.2c1$2$ $ 2^{6} \cdot 5 \cdot 7 $ $x^{18} + 14 x^{16} + 77 x^{14} + 310 x^{12} + 994 x^{10} + 1876 x^{8} + 3289 x^{6} + 3290 x^{4} + 1400 x^{2} + 1000$ $S_3 \times C_6$ (as 18T6) $0$ $0$
* 2.2e2_5_7.6t5.1c1$2$ $ 2^{2} \cdot 5 \cdot 7 $ $x^{6} - 2 x^{5} + 3 x^{4} + 4 x^{2} + 2 x + 1$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2e6_5_7.12t18.2c2$2$ $ 2^{6} \cdot 5 \cdot 7 $ $x^{18} + 14 x^{16} + 77 x^{14} + 310 x^{12} + 994 x^{10} + 1876 x^{8} + 3289 x^{6} + 3290 x^{4} + 1400 x^{2} + 1000$ $S_3 \times C_6$ (as 18T6) $0$ $0$
* 2.2e2_5_7.6t5.1c2$2$ $ 2^{2} \cdot 5 \cdot 7 $ $x^{6} - 2 x^{5} + 3 x^{4} + 4 x^{2} + 2 x + 1$ $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.