Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 504 x^{14} - 1512 x^{13} + 4272 x^{12} - 10422 x^{11} + 24552 x^{10} - 51962 x^{9} + 108099 x^{8} - 193914 x^{7} + 351249 x^{6} - 518733 x^{5} + 814050 x^{4} - 933768 x^{3} + 1272483 x^{2} - 860841 x + 992091 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2322038274967832964613417227771=-\,3^{44}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(297=3^{3}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{297}(1,·)$, $\chi_{297}(67,·)$, $\chi_{297}(133,·)$, $\chi_{297}(199,·)$, $\chi_{297}(265,·)$, $\chi_{297}(10,·)$, $\chi_{297}(76,·)$, $\chi_{297}(142,·)$, $\chi_{297}(208,·)$, $\chi_{297}(274,·)$, $\chi_{297}(34,·)$, $\chi_{297}(100,·)$, $\chi_{297}(166,·)$, $\chi_{297}(232,·)$, $\chi_{297}(43,·)$, $\chi_{297}(109,·)$, $\chi_{297}(175,·)$, $\chi_{297}(241,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{53} a^{16} - \frac{17}{53} a^{15} - \frac{10}{53} a^{14} - \frac{9}{53} a^{13} - \frac{5}{53} a^{12} - \frac{18}{53} a^{11} + \frac{18}{53} a^{10} - \frac{26}{53} a^{9} + \frac{16}{53} a^{8} - \frac{7}{53} a^{7} + \frac{25}{53} a^{5} - \frac{23}{53} a^{4} - \frac{2}{53} a^{3} - \frac{20}{53} a^{2} - \frac{2}{53} a + \frac{26}{53}$, $\frac{1}{34169207459977467101463968260835724840893} a^{17} + \frac{74702070290591842567599113916041164529}{34169207459977467101463968260835724840893} a^{16} + \frac{16934024691184908370691142181567855006393}{34169207459977467101463968260835724840893} a^{15} - \frac{10169241116171378359967406796097855654359}{34169207459977467101463968260835724840893} a^{14} + \frac{13095148955058156249095336276127644299015}{34169207459977467101463968260835724840893} a^{13} - \frac{8659869122806934916787980423875743009374}{34169207459977467101463968260835724840893} a^{12} + \frac{1524511619608715687702695389250937001269}{34169207459977467101463968260835724840893} a^{11} - \frac{16265901593002288500908810232761163449303}{34169207459977467101463968260835724840893} a^{10} - \frac{7360198747608851375774859101163775870168}{34169207459977467101463968260835724840893} a^{9} - \frac{12946149880015593877331645420924168540782}{34169207459977467101463968260835724840893} a^{8} - \frac{16380810862811733609277167453909955413879}{34169207459977467101463968260835724840893} a^{7} - \frac{10612256592505140489840392793186177357522}{34169207459977467101463968260835724840893} a^{6} + \frac{6438487699785836555437597172861068390651}{34169207459977467101463968260835724840893} a^{5} + \frac{10087580776169055905295840101726134117781}{34169207459977467101463968260835724840893} a^{4} - \frac{14364899010791172871648139849802121945442}{34169207459977467101463968260835724840893} a^{3} - \frac{9167038593120350835774013135868593804859}{34169207459977467101463968260835724840893} a^{2} + \frac{11141308888863326655833815249761597613515}{34169207459977467101463968260835724840893} a - \frac{7666495068171568474937539195213172302344}{34169207459977467101463968260835724840893}$
Class group and class number
$C_{1791}$, which has order $1791$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{9})^+\), 6.0.8732691.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 11 | Data not computed | ||||||