Properties

Label 18.0.23102021417...1488.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{33}\cdot 11^{6}\cdot 19^{15}$
Root discriminant $92.18$
Ramified primes $2, 11, 19$
Class number $16200$ (GRH)
Class group $[90, 180]$ (GRH)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![54872, 0, 521284, 0, 1344364, 0, 1451581, 0, 768208, 0, 209741, 0, 29716, 0, 2166, 0, 76, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 76*x^16 + 2166*x^14 + 29716*x^12 + 209741*x^10 + 768208*x^8 + 1451581*x^6 + 1344364*x^4 + 521284*x^2 + 54872)
 
gp: K = bnfinit(x^18 + 76*x^16 + 2166*x^14 + 29716*x^12 + 209741*x^10 + 768208*x^8 + 1451581*x^6 + 1344364*x^4 + 521284*x^2 + 54872, 1)
 

Normalized defining polynomial

\( x^{18} + 76 x^{16} + 2166 x^{14} + 29716 x^{12} + 209741 x^{10} + 768208 x^{8} + 1451581 x^{6} + 1344364 x^{4} + 521284 x^{2} + 54872 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-231020214178968501941151058507071488=-\,2^{33}\cdot 11^{6}\cdot 19^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $92.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{19} a^{6}$, $\frac{1}{19} a^{7}$, $\frac{1}{19} a^{8}$, $\frac{1}{19} a^{9}$, $\frac{1}{361} a^{10} + \frac{2}{19} a^{4}$, $\frac{1}{361} a^{11} + \frac{2}{19} a^{5}$, $\frac{1}{2527} a^{12} - \frac{2}{2527} a^{10} + \frac{2}{133} a^{8} + \frac{2}{133} a^{6} - \frac{61}{133} a^{4} + \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{2527} a^{13} - \frac{2}{2527} a^{11} + \frac{2}{133} a^{9} + \frac{2}{133} a^{7} - \frac{61}{133} a^{5} + \frac{2}{7} a^{3} + \frac{2}{7} a$, $\frac{1}{96026} a^{14} + \frac{2}{2527} a^{10} + \frac{59}{2527} a^{8} - \frac{3}{266} a^{6} + \frac{6}{19} a^{4} - \frac{15}{266} a^{2} - \frac{1}{7}$, $\frac{1}{96026} a^{15} + \frac{2}{2527} a^{11} + \frac{59}{2527} a^{9} - \frac{3}{266} a^{7} + \frac{6}{19} a^{5} - \frac{15}{266} a^{3} - \frac{1}{7} a$, $\frac{1}{8912941268} a^{16} + \frac{2881}{4456470634} a^{14} + \frac{3141}{33507298} a^{12} + \frac{42918}{117275543} a^{10} + \frac{143071}{6092236} a^{8} - \frac{54805}{12344794} a^{6} + \frac{8480869}{24689588} a^{4} - \frac{5788511}{12344794} a^{2} - \frac{115443}{324863}$, $\frac{1}{8912941268} a^{17} + \frac{2881}{4456470634} a^{15} + \frac{3141}{33507298} a^{13} + \frac{42918}{117275543} a^{11} + \frac{143071}{6092236} a^{9} - \frac{54805}{12344794} a^{7} + \frac{8480869}{24689588} a^{5} - \frac{5788511}{12344794} a^{3} - \frac{115443}{324863} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{90}\times C_{180}$, which has order $16200$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 654963.5034721284 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_3$ (as 18T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{-38}) \), 3.3.15884.1, 3.3.361.1, 6.0.613597140992.3, 6.0.1267762688.1, 9.9.4007556327104.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.9.3$x^{6} - 4 x^{4} + 4 x^{2} + 24$$2$$3$$9$$C_6$$[3]^{3}$
2.12.24.307$x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19Data not computed