Normalized defining polynomial
\( x^{18} + 24 x^{16} + 174 x^{14} + 237 x^{12} - 1638 x^{10} - 3318 x^{8} + 2205 x^{6} + 8820 x^{4} + 6174 x^{2} + 1029 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2294529340113174813908926464=-\,2^{26}\cdot 3^{25}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{8} - \frac{1}{7} a^{6} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} + \frac{3}{7} a^{9} - \frac{1}{7} a^{7} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{8} + \frac{2}{7} a^{6} + \frac{3}{7} a^{4}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{9} + \frac{2}{7} a^{7} + \frac{3}{7} a^{5}$, $\frac{1}{49} a^{14} + \frac{3}{49} a^{12} - \frac{1}{49} a^{10} + \frac{20}{49} a^{8} + \frac{2}{7} a^{6} - \frac{3}{7} a^{4}$, $\frac{1}{98} a^{15} - \frac{1}{98} a^{14} - \frac{2}{49} a^{13} + \frac{2}{49} a^{12} - \frac{1}{98} a^{11} + \frac{1}{98} a^{10} + \frac{41}{98} a^{9} - \frac{41}{98} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{14} a^{5} - \frac{1}{14} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{3760280702402} a^{16} - \frac{17500268309}{3760280702402} a^{14} + \frac{27625087977}{537182957486} a^{12} - \frac{75907685822}{1880140351201} a^{10} - \frac{153700757265}{1880140351201} a^{8} + \frac{67029056705}{268591478743} a^{6} + \frac{196966576931}{537182957486} a^{4} + \frac{36793644773}{76740422498} a^{2} + \frac{37789784533}{76740422498}$, $\frac{1}{7520561404804} a^{17} - \frac{1}{7520561404804} a^{16} - \frac{17500268309}{7520561404804} a^{15} - \frac{59240154189}{7520561404804} a^{14} + \frac{27625087977}{1074365914972} a^{13} + \frac{113586074153}{7520561404804} a^{12} + \frac{192683792921}{3760280702402} a^{11} - \frac{77156790836}{1880140351201} a^{10} + \frac{326036839482}{1880140351201} a^{9} + \frac{1535028362229}{3760280702402} a^{8} - \frac{239932633287}{537182957486} a^{7} - \frac{14329422728}{268591478743} a^{6} + \frac{17175164919}{153480844996} a^{5} - \frac{196966576931}{1074365914972} a^{4} + \frac{36793644773}{153480844996} a^{3} - \frac{36793644773}{153480844996} a^{2} + \frac{37789784533}{153480844996} a + \frac{38950637965}{153480844996}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1108870.57618 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 60 conjugacy class representatives for t18n461 are not computed |
| Character table for t18n461 is not computed |
Intermediate fields
| 3.1.108.1, 3.3.756.1, 9.3.11666192832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.20.7 | $x^{12} - 3 x^{8} - x^{4} + 8 x^{2} + 7$ | $6$ | $2$ | $20$ | 12T135 | $[4/3, 4/3, 2, 2, 8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.12.9.1 | $x^{12} - 49 x^{4} + 686$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |