Normalized defining polynomial
\( x^{18} - 7 x^{17} + 85 x^{16} - 434 x^{15} + 3187 x^{14} - 12969 x^{13} + 71783 x^{12} - 239315 x^{11} + 1080280 x^{10} - 2959970 x^{9} + 11308280 x^{8} - 25028575 x^{7} + 82531870 x^{6} - 141089824 x^{5} + 405966017 x^{4} - 485008616 x^{3} + 1225758137 x^{2} - 780172810 x + 1741936681 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22733694229750493213828467513671875=-\,5^{9}\cdot 7^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(665=5\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{665}(384,·)$, $\chi_{665}(1,·)$, $\chi_{665}(386,·)$, $\chi_{665}(454,·)$, $\chi_{665}(139,·)$, $\chi_{665}(524,·)$, $\chi_{665}(594,·)$, $\chi_{665}(596,·)$, $\chi_{665}(349,·)$, $\chi_{665}(351,·)$, $\chi_{665}(419,·)$, $\chi_{665}(36,·)$, $\chi_{665}(104,·)$, $\chi_{665}(106,·)$, $\chi_{665}(491,·)$, $\chi_{665}(176,·)$, $\chi_{665}(244,·)$, $\chi_{665}(631,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1907997756384950051713214142440283663903924457779445265951} a^{17} - \frac{354134399317941959888596544444297065337090477754182355737}{1907997756384950051713214142440283663903924457779445265951} a^{16} - \frac{296408539091144450322839079625435268264275637948046112696}{1907997756384950051713214142440283663903924457779445265951} a^{15} - \frac{721405369925821294827298817713897202398253719253524486096}{1907997756384950051713214142440283663903924457779445265951} a^{14} + \frac{443448280453173461331189612653818183344781346960562344215}{1907997756384950051713214142440283663903924457779445265951} a^{13} + \frac{508470458828930314185275654457175708340301807470436179174}{1907997756384950051713214142440283663903924457779445265951} a^{12} - \frac{769443834828984501257054328522315127548913137792231640397}{1907997756384950051713214142440283663903924457779445265951} a^{11} + \frac{204234814569012167816200010656279206268237384629015612627}{1907997756384950051713214142440283663903924457779445265951} a^{10} - \frac{443608934978345433409231360981025207755289764936815016862}{1907997756384950051713214142440283663903924457779445265951} a^{9} + \frac{212104543182043176844840998049602801831074800813534740076}{1907997756384950051713214142440283663903924457779445265951} a^{8} - \frac{262593501303633903159822278080633103604794424225107995840}{1907997756384950051713214142440283663903924457779445265951} a^{7} + \frac{274492064379572795422433925956252306950932563306804452348}{1907997756384950051713214142440283663903924457779445265951} a^{6} - \frac{408338180843316399083950178405829828767562600121299893100}{1907997756384950051713214142440283663903924457779445265951} a^{5} + \frac{114600936164933209254766879924152892394431074024290314892}{1907997756384950051713214142440283663903924457779445265951} a^{4} - \frac{24315166614371382348846337596987477565370124611865154343}{1907997756384950051713214142440283663903924457779445265951} a^{3} - \frac{516273860768707278249955535317976101136189380896536454776}{1907997756384950051713214142440283663903924457779445265951} a^{2} + \frac{341332712087419405321945497262534901286611820200934200025}{1907997756384950051713214142440283663903924457779445265951} a + \frac{462086411191433028798594839443369294257827491330615918894}{1907997756384950051713214142440283663903924457779445265951}$
Class group and class number
$C_{2}\times C_{4}\times C_{15124}$, which has order $120992$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 3.3.361.1, 6.0.5587512875.3, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||