Normalized defining polynomial
\( x^{18} + 27592275 x^{12} + 25321119032448 x^{6} + 1418640313495891968 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2270120800429981380726586184495439361286008707872399584386003=-\,3^{33}\cdot 17^{12}\cdot 307^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2254.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17, 307$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{17} a^{3}$, $\frac{1}{34} a^{4} - \frac{1}{2} a$, $\frac{1}{34} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{1734} a^{6} - \frac{1}{34} a^{3}$, $\frac{1}{5202} a^{7} + \frac{1}{6} a$, $\frac{1}{31212} a^{8} + \frac{1}{36} a^{2}$, $\frac{1}{6367248} a^{9} + \frac{73}{7344} a^{3} - \frac{1}{2}$, $\frac{1}{38203488} a^{10} - \frac{1}{10404} a^{7} - \frac{575}{44064} a^{4} + \frac{5}{12} a$, $\frac{1}{229220928} a^{11} - \frac{1}{62424} a^{8} + \frac{721}{264384} a^{5} - \frac{1}{72} a^{2}$, $\frac{1}{2131182494963712} a^{12} - \frac{104151023}{2458111297536} a^{6} - \frac{1}{34} a^{3} - \frac{18791}{60768}$, $\frac{1}{12787094969782272} a^{13} + \frac{1313444881}{14748667785216} a^{7} + \frac{41977}{364608} a$, $\frac{1}{76722569818693632} a^{14} + \frac{1313444881}{88492006711296} a^{8} + \frac{406585}{2187648} a^{2}$, $\frac{1}{15651404243013500928} a^{15} - \frac{1}{4262364989927424} a^{12} + \frac{1313444881}{18052369369104384} a^{9} - \frac{1313444881}{4916222595072} a^{6} + \frac{406585}{446280192} a^{3} - \frac{41977}{121536}$, $\frac{1}{93908425458081005568} a^{16} - \frac{1}{25574189939564544} a^{13} + \frac{1313444881}{108314216214626304} a^{10} - \frac{1313444881}{29497335570432} a^{7} + \frac{26658361}{2677681152} a^{4} - \frac{41977}{729216} a$, $\frac{1}{563450552748486033408} a^{17} - \frac{1}{153445139637387264} a^{14} + \frac{1313444881}{649885297287757824} a^{11} - \frac{1313444881}{176984013422592} a^{8} + \frac{105413689}{16066086912} a^{5} - \frac{406585}{4375296} a^{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{12}\times C_{12}\times C_{12}\times C_{36}\times C_{36}\times C_{36}$, which has order $11609505792$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{199}{978212765188343808} a^{15} + \frac{6286519}{1128273085569024} a^{9} + \frac{107965}{27892512} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 392363527634279.25 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.6618824523.1 x3, 3.3.94249.1, 6.0.131426514198798532587.1, 6.0.239837598027.5, 6.0.1394460569330163.1 x2, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 307 | Data not computed | ||||||