Normalized defining polynomial
\( x^{18} - x^{17} + 13 x^{16} + 14 x^{15} + 56 x^{14} + 169 x^{13} + 406 x^{12} + 308 x^{11} + 2504 x^{10} - 1429 x^{9} + 9291 x^{8} - 10863 x^{7} + 21735 x^{6} - 23733 x^{5} + 43497 x^{4} - 20412 x^{3} + 48114 x^{2} - 13122 x + 19683 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-225016488014952555075055616=-\,2^{12}\cdot 11^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} - \frac{4}{9} a^{8} + \frac{2}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{4}{27} a^{10} - \frac{4}{27} a^{9} - \frac{7}{27} a^{8} - \frac{11}{27} a^{7} + \frac{10}{27} a^{6} + \frac{2}{27} a^{5} + \frac{11}{27} a^{4} + \frac{11}{27} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{12} + \frac{4}{81} a^{11} - \frac{4}{81} a^{10} - \frac{34}{81} a^{9} + \frac{16}{81} a^{8} + \frac{10}{81} a^{7} + \frac{29}{81} a^{6} + \frac{38}{81} a^{5} - \frac{16}{81} a^{4} - \frac{5}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{243} a^{14} - \frac{1}{243} a^{13} + \frac{4}{243} a^{12} - \frac{4}{243} a^{11} - \frac{34}{243} a^{10} - \frac{65}{243} a^{9} + \frac{10}{243} a^{8} - \frac{52}{243} a^{7} + \frac{119}{243} a^{6} - \frac{97}{243} a^{5} + \frac{22}{81} a^{4} + \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{481869} a^{15} - \frac{487}{481869} a^{14} - \frac{2066}{481869} a^{13} + \frac{8708}{481869} a^{12} - \frac{25324}{481869} a^{11} - \frac{51563}{481869} a^{10} - \frac{174068}{481869} a^{9} + \frac{170543}{481869} a^{8} - \frac{197728}{481869} a^{7} + \frac{22898}{481869} a^{6} - \frac{54629}{160623} a^{5} - \frac{4600}{53541} a^{4} - \frac{3643}{17847} a^{3} - \frac{275}{661} a^{2} - \frac{145}{661} a - \frac{303}{661}$, $\frac{1}{1445607} a^{16} - \frac{1}{1445607} a^{15} - \frac{788}{1445607} a^{14} - \frac{1885}{1445607} a^{13} + \frac{18668}{1445607} a^{12} + \frac{20842}{1445607} a^{11} - \frac{75365}{1445607} a^{10} - \frac{682432}{1445607} a^{9} - \frac{64420}{1445607} a^{8} - \frac{294010}{1445607} a^{7} - \frac{184241}{481869} a^{6} - \frac{3047}{160623} a^{5} + \frac{125}{1983} a^{4} + \frac{8869}{17847} a^{3} - \frac{1480}{5949} a^{2} + \frac{205}{661} a - \frac{172}{661}$, $\frac{1}{33016396388940309483} a^{17} + \frac{1136931048269}{33016396388940309483} a^{16} - \frac{19464430344503}{33016396388940309483} a^{15} + \frac{60249443262676853}{33016396388940309483} a^{14} + \frac{44117041913306210}{33016396388940309483} a^{13} + \frac{261924484375896685}{33016396388940309483} a^{12} + \frac{100925983693253386}{33016396388940309483} a^{11} + \frac{2586993236700810572}{33016396388940309483} a^{10} - \frac{8261907683370627220}{33016396388940309483} a^{9} + \frac{8352539571008457497}{33016396388940309483} a^{8} - \frac{4105318126695127982}{11005465462980103161} a^{7} + \frac{173479033452836848}{407609831962226043} a^{6} - \frac{158283092060942728}{1222829495886678129} a^{5} - \frac{185932915851585140}{407609831962226043} a^{4} + \frac{53799330454901}{45289981329136227} a^{3} + \frac{3565056336923860}{45289981329136227} a^{2} - \frac{2277525405481518}{5032220147681803} a + \frac{1515558032722676}{5032220147681803}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25638.894138274067 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.3.169.1, 3.1.676.1, 6.0.38014691.1, 6.0.608235056.2, 9.3.308915776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 13 | Data not computed | ||||||