Normalized defining polynomial
\( x^{18} - 9 x^{17} - 402 x^{16} + 1840 x^{15} + 69018 x^{14} - 10914 x^{13} - 5537100 x^{12} - 17815248 x^{11} + 205547661 x^{10} + 1433969187 x^{9} - 1050471018 x^{8} - 39884181384 x^{7} - 128655698368 x^{6} + 185836782000 x^{5} + 2638164247776 x^{4} + 9516122868224 x^{3} + 19470659444736 x^{2} + 24153643711488 x + 15157286557696 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22497960113751479934820492718164014658776000000000=-\,2^{12}\cdot 3^{27}\cdot 5^{9}\cdot 79^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $551.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{3}{32} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{192} a^{9} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} + \frac{1}{96} a^{6} + \frac{3}{64} a^{5} + \frac{7}{64} a^{4} - \frac{5}{48} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a - \frac{1}{6}$, $\frac{1}{192} a^{10} - \frac{1}{64} a^{8} - \frac{1}{48} a^{7} - \frac{3}{64} a^{6} - \frac{17}{192} a^{4} - \frac{1}{16} a^{3} - \frac{3}{16} a^{2} - \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{768} a^{11} + \frac{1}{768} a^{9} + \frac{1}{96} a^{8} - \frac{3}{256} a^{7} - \frac{1}{48} a^{6} + \frac{43}{768} a^{5} - \frac{1}{32} a^{4} + \frac{31}{192} a^{3} + \frac{5}{24} a^{2} + \frac{1}{8} a - \frac{1}{6}$, $\frac{1}{60672} a^{12} - \frac{1}{10112} a^{11} - \frac{119}{60672} a^{10} + \frac{3}{10112} a^{9} + \frac{165}{20224} a^{8} + \frac{187}{30336} a^{7} - \frac{159}{20224} a^{6} + \frac{697}{10112} a^{5} + \frac{1585}{15168} a^{4} + \frac{1645}{7584} a^{3} - \frac{133}{632} a^{2} + \frac{457}{948} a + \frac{16}{237}$, $\frac{1}{121344} a^{13} - \frac{1}{121344} a^{12} + \frac{3}{40448} a^{11} + \frac{55}{121344} a^{10} + \frac{37}{40448} a^{9} + \frac{107}{40448} a^{8} - \frac{2557}{121344} a^{7} + \frac{2495}{40448} a^{6} + \frac{467}{10112} a^{5} - \frac{159}{10112} a^{4} + \frac{413}{3792} a^{3} + \frac{149}{632} a^{2} + \frac{106}{237} a - \frac{157}{474}$, $\frac{1}{970752} a^{14} - \frac{1}{323584} a^{13} + \frac{7}{970752} a^{12} + \frac{61}{970752} a^{11} - \frac{155}{970752} a^{10} - \frac{605}{970752} a^{9} + \frac{13781}{970752} a^{8} - \frac{20497}{970752} a^{7} - \frac{9101}{485376} a^{6} - \frac{1697}{80896} a^{5} - \frac{3253}{121344} a^{4} + \frac{593}{5056} a^{3} - \frac{1757}{7584} a^{2} - \frac{11}{3792} a + \frac{283}{1896}$, $\frac{1}{5824512} a^{15} - \frac{1}{2912256} a^{14} - \frac{1}{485376} a^{13} + \frac{5}{1456128} a^{12} + \frac{1337}{2912256} a^{11} - \frac{1781}{728064} a^{10} + \frac{1597}{728064} a^{9} - \frac{20995}{1456128} a^{8} + \frac{36421}{5824512} a^{7} - \frac{38153}{970752} a^{6} - \frac{1453}{161792} a^{5} - \frac{46037}{728064} a^{4} - \frac{20885}{91008} a^{3} - \frac{7187}{45504} a^{2} + \frac{6599}{22752} a - \frac{67}{144}$, $\frac{1}{93192192} a^{16} - \frac{1}{15532032} a^{15} + \frac{19}{46596096} a^{14} + \frac{115}{46596096} a^{13} + \frac{73}{11649024} a^{12} + \frac{18905}{46596096} a^{11} + \frac{481}{196608} a^{10} + \frac{35731}{15532032} a^{9} + \frac{1137767}{93192192} a^{8} + \frac{444755}{23298048} a^{7} - \frac{24803}{485376} a^{6} - \frac{452485}{5824512} a^{5} - \frac{608563}{5824512} a^{4} - \frac{15587}{364032} a^{3} + \frac{419}{7584} a^{2} + \frac{9467}{91008} a - \frac{16111}{91008}$, $\frac{1}{35728077418013854491087937451558898461966615552012845056} a^{17} - \frac{127639953634274406153923426898162033902162263849}{35728077418013854491087937451558898461966615552012845056} a^{16} + \frac{60634114659664683389363846281818461105237149391}{4466009677251731811385992181444862307745826944001605632} a^{15} - \frac{2886726890451432974275745984964661846455146953123}{8932019354503463622771984362889724615491653888003211264} a^{14} - \frac{14155092889218355654907220936328291399922995094503}{5954679569668975748514656241926483076994435925335474176} a^{13} + \frac{8919150394265247084041960344420937424522157442917}{1984893189889658582838218747308827692331478641778491392} a^{12} - \frac{5749914483750296875136905413549618089136789481229951}{8932019354503463622771984362889724615491653888003211264} a^{11} + \frac{7783382939473687412626501788267288594190297530361225}{8932019354503463622771984362889724615491653888003211264} a^{10} + \frac{16953120678410164503653772731660256483162416956086619}{11909359139337951497029312483852966153988871850670948352} a^{9} + \frac{157186027392484959077678601455762911161077127833108983}{35728077418013854491087937451558898461966615552012845056} a^{8} + \frac{13464219728323131194656947959328257446660929627586383}{992446594944829291419109373654413846165739320889245696} a^{7} - \frac{62064025508856488833509315743835412708465421425653793}{2233004838625865905692996090722431153872913472000802816} a^{6} - \frac{1561784969665031167280475257289315467103292378085117}{62027912184051830713694335853400865385358707555577856} a^{5} + \frac{3184963523868642913808080518620349457949356513437857}{248111648736207322854777343413603461541434830222311424} a^{4} + \frac{6379922340406023913510881231135422213816292850230433}{139562802414116619105812255670151947117057092000050176} a^{3} - \frac{1119775071682202858533967523008149578705690435838123}{11630233534509718258817687972512662259754757666670848} a^{2} + \frac{523897218495617149602342534400700295977863144533497}{1090334393860286086764158247423062086852008531250392} a + \frac{221911727229566639412169190304246717667352489395247}{11630233534509718258817687972512662259754757666670848}$
Class group and class number
$C_{6}\times C_{84}\times C_{45051972}$, which has order $22706193888$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32038743174.66701 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.505521.1, 3.3.316.1, 6.0.337014000.4, 6.0.95831805540375.1, 9.9.653167654112852807616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $79$ | 79.3.2.3 | $x^{3} - 316$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 79.3.2.3 | $x^{3} - 316$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 79.6.5.2 | $x^{6} - 316$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 79.6.5.2 | $x^{6} - 316$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |