Normalized defining polynomial
\( x^{18} - 3 x^{17} + 210 x^{16} - 372 x^{15} + 20739 x^{14} - 26121 x^{13} + 1092552 x^{12} - 574347 x^{11} + 29917974 x^{10} - 10748977 x^{9} + 437841852 x^{8} - 161530719 x^{7} + 3126531786 x^{6} - 1511623617 x^{5} + 11832099909 x^{4} - 4634433048 x^{3} + 116703097728 x^{2} - 137278953357 x + 266589164359 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-223001056753368049126899632782755242066866176=-\,2^{12}\cdot 3^{31}\cdot 7^{14}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $290.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{5} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{63} a^{15} - \frac{1}{21} a^{14} - \frac{1}{63} a^{12} - \frac{2}{63} a^{11} - \frac{4}{63} a^{10} - \frac{1}{63} a^{9} + \frac{1}{21} a^{8} + \frac{1}{7} a^{7} - \frac{8}{63} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{189} a^{16} + \frac{1}{189} a^{15} + \frac{1}{21} a^{14} - \frac{1}{189} a^{13} + \frac{8}{189} a^{12} + \frac{1}{21} a^{11} - \frac{17}{189} a^{10} - \frac{8}{189} a^{9} + \frac{4}{27} a^{7} + \frac{10}{189} a^{6} + \frac{1}{3} a^{5} - \frac{4}{27} a^{4} - \frac{4}{27} a^{3} + \frac{1}{3} a^{2} + \frac{13}{27} a + \frac{4}{27}$, $\frac{1}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{17} + \frac{6148217792436004451497083191499345393499915479911635302966291999128207460394168664000}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{16} - \frac{31718382705419534093736557288072824989416387672575517475778541714127710776668463342087}{4553994102191706213233638548962798994592331734356827373927068183600711434077047249025327} a^{15} + \frac{807737539034160621086575467286727952278226886871940035152559070165508768925363359042718}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{14} + \frac{635194918555202091506488945275898394045340853705526861987868272652821265930037877641837}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{13} + \frac{2476558175323675924495076318579548386987088795466475087096623018513507662406746900523276}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{12} + \frac{72696934970389798132284185903116659077850017447072383473073085897938857685322217425251}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{11} - \frac{1200996627387177787489026365666424988029421447994100670334827928645444915686006517141719}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{10} - \frac{6044959180909053413036416697784011575710967698834951928147822189593984000862892783389880}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{9} - \frac{6794791549047533791031966811571777248870260298906614415312043203852187333874463535979762}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{8} - \frac{658754859491677847544151455752393525135970019304322354195445561209286891351036100436950}{4553994102191706213233638548962798994592331734356827373927068183600711434077047249025327} a^{7} + \frac{5989806383813486001498105223955134032853438116628922582994925925908463158251576586038205}{50093935124108768345570024038590788940515649077925101113197750019607825774847519739278597} a^{6} - \frac{720227702724829603889256859297019845682418210965893871798473826624279644770353540985796}{7156276446301252620795717719798684134359378439703585873313964288515403682121074248468371} a^{5} - \frac{3217687940899692161811656723157977566567721135873318533539745172556161184018732060409217}{7156276446301252620795717719798684134359378439703585873313964288515403682121074248468371} a^{4} - \frac{246100065909368141297112675386770763488896855000253906161598953421324847279009817057686}{650570586027386601890519792708971284941761676336689624846724026228673062011006749860761} a^{3} - \frac{2261825121781246261440977234410441784257045779908759278215306886348824718133787122207183}{7156276446301252620795717719798684134359378439703585873313964288515403682121074248468371} a^{2} - \frac{2402757422604146126453489961907818752570656638411992650231388759410891579059297711894640}{7156276446301252620795717719798684134359378439703585873313964288515403682121074248468371} a + \frac{3273831596849062630292884486262909549565863588725521332730911808925195594152214822879510}{7156276446301252620795717719798684134359378439703585873313964288515403682121074248468371}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}\times C_{2745576}$, which has order $296522208$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), 3.3.3969.2, 3.3.756.1, 6.0.86850039024.2, 6.0.2393804200599.8, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |