Normalized defining polynomial
\( x^{18} - 4 x^{17} + 7 x^{16} - 13 x^{15} + 73 x^{14} - 196 x^{13} + 456 x^{12} - 1442 x^{11} + 5024 x^{10} - 11878 x^{9} + 20482 x^{8} - 24026 x^{7} + 20896 x^{6} - 9772 x^{5} + 3997 x^{4} + 1484 x^{3} + 1519 x^{2} + 343 x + 49 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-220341376966031977018118679=-\,3^{9}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{11} + \frac{3}{20} a^{10} - \frac{3}{20} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{20} a^{6} + \frac{1}{10} a^{5} + \frac{1}{4} a^{4} + \frac{1}{20} a^{3} + \frac{7}{20} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{20} a^{14} + \frac{1}{20} a^{12} - \frac{1}{10} a^{11} - \frac{3}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{4} a^{5} - \frac{1}{5} a^{4} - \frac{3}{20} a^{3} - \frac{3}{20} a^{2} - \frac{3}{20} a + \frac{1}{4}$, $\frac{1}{140} a^{15} + \frac{3}{140} a^{14} + \frac{1}{140} a^{12} + \frac{1}{14} a^{11} + \frac{1}{20} a^{10} + \frac{29}{140} a^{9} - \frac{3}{20} a^{8} + \frac{13}{70} a^{7} - \frac{1}{7} a^{6} + \frac{7}{20} a^{5} + \frac{2}{7} a^{4} - \frac{13}{140} a^{3} - \frac{7}{20} a^{2} - \frac{2}{5} a - \frac{1}{20}$, $\frac{1}{64540} a^{16} - \frac{43}{16135} a^{15} + \frac{69}{4610} a^{14} - \frac{79}{6454} a^{13} - \frac{5709}{64540} a^{12} + \frac{91}{4610} a^{11} - \frac{12417}{64540} a^{10} + \frac{753}{9220} a^{9} + \frac{7831}{64540} a^{8} + \frac{1901}{32270} a^{7} + \frac{293}{922} a^{6} - \frac{3677}{64540} a^{5} - \frac{3743}{16135} a^{4} - \frac{4059}{9220} a^{3} - \frac{687}{2305} a^{2} + \frac{379}{9220} a + \frac{1507}{4610}$, $\frac{1}{11903630297992011469100} a^{17} + \frac{44541124973854457}{11903630297992011469100} a^{16} - \frac{41459965694722884371}{11903630297992011469100} a^{15} - \frac{172763659599917428229}{11903630297992011469100} a^{14} - \frac{66956432251312914029}{2975907574498002867275} a^{13} - \frac{191798426264147977573}{2975907574498002867275} a^{12} - \frac{550972640732088292493}{5951815148996005734550} a^{11} - \frac{520213544052571099092}{2975907574498002867275} a^{10} + \frac{784601960338468394813}{5951815148996005734550} a^{9} - \frac{222500716822103092531}{5951815148996005734550} a^{8} - \frac{25243749169197226638}{595181514899600573455} a^{7} + \frac{756593091751333672156}{2975907574498002867275} a^{6} - \frac{138008829764428167726}{595181514899600573455} a^{5} - \frac{1990980667599294854351}{5951815148996005734550} a^{4} + \frac{607058939274725586391}{2380726059598402293820} a^{3} + \frac{366323798735226823187}{1700518613998858781300} a^{2} + \frac{602269550941481521279}{1700518613998858781300} a + \frac{468277201052490271983}{1700518613998858781300}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81487.9586443 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), 3.1.231.1 x3, \(\Q(\zeta_{7})^+\), 6.0.12326391.1, 6.0.603993159.2 x2, 6.0.603993159.1, 9.3.29595664791.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.603993159.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |