Normalized defining polynomial
\( x^{18} + 28 x^{16} - 6 x^{15} + 294 x^{14} - 98 x^{13} + 2049 x^{12} - 490 x^{11} + 9401 x^{10} + 62 x^{9} + 25921 x^{8} + 5572 x^{7} + 50645 x^{6} + 13328 x^{5} + 75068 x^{4} + 19698 x^{3} + 60025 x^{2} + 17150 x + 42875 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-220306167525977029404855894016=-\,2^{27}\cdot 7^{12}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{28} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} + \frac{2}{7} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{5}{28} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{2}{7} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{812} a^{13} - \frac{1}{203} a^{12} + \frac{11}{116} a^{11} - \frac{17}{406} a^{10} + \frac{241}{812} a^{9} + \frac{12}{29} a^{8} + \frac{369}{812} a^{7} - \frac{89}{203} a^{6} + \frac{55}{116} a^{5} - \frac{123}{406} a^{4} - \frac{3}{28} a^{3} + \frac{13}{29} a^{2} - \frac{1}{4} a - \frac{25}{58}$, $\frac{1}{812} a^{14} + \frac{3}{812} a^{12} + \frac{137}{406} a^{11} - \frac{43}{116} a^{10} + \frac{6}{203} a^{9} - \frac{317}{812} a^{8} + \frac{11}{29} a^{7} + \frac{295}{812} a^{6} - \frac{165}{406} a^{5} + \frac{21}{116} a^{4} - \frac{83}{203} a^{3} + \frac{5}{116} a^{2} - \frac{25}{58} a - \frac{13}{58}$, $\frac{1}{619556} a^{15} + \frac{10}{22127} a^{13} + \frac{2269}{619556} a^{12} - \frac{585}{6322} a^{11} + \frac{31515}{88508} a^{10} - \frac{34836}{154889} a^{9} - \frac{121}{436} a^{8} - \frac{4597}{44254} a^{7} + \frac{47305}{619556} a^{6} + \frac{13}{58} a^{5} - \frac{25413}{88508} a^{4} - \frac{180}{22127} a^{3} - \frac{1939}{12644} a^{2} - \frac{2883}{12644} a + \frac{4041}{12644}$, $\frac{1}{22548740620} a^{16} - \frac{723}{1127437031} a^{15} - \frac{1953131}{3221248660} a^{14} - \frac{12180111}{22548740620} a^{13} - \frac{36260131}{22548740620} a^{12} - \frac{1065549879}{3221248660} a^{11} - \frac{3737005281}{22548740620} a^{10} - \frac{1487785073}{4509748124} a^{9} + \frac{144251663}{3221248660} a^{8} + \frac{7870853997}{22548740620} a^{7} - \frac{8948963039}{22548740620} a^{6} - \frac{67838597}{460178380} a^{5} + \frac{41136621}{644249732} a^{4} + \frac{1467054879}{3221248660} a^{3} + \frac{1450173}{115044595} a^{2} - \frac{5306077}{15868220} a - \frac{6477986}{23008919}$, $\frac{1}{7057158159689866900} a^{17} + \frac{5568617}{1411431631937973380} a^{16} + \frac{1298175154207}{1764289539922466725} a^{15} - \frac{2592768243578701}{7057158159689866900} a^{14} - \frac{4072384096428791}{7057158159689866900} a^{13} - \frac{39318967739400179}{3528579079844933450} a^{12} + \frac{1192719259672111869}{7057158159689866900} a^{11} - \frac{64431420734490041}{141143163193797338} a^{10} + \frac{3071756837557412451}{7057158159689866900} a^{9} - \frac{912053174352164289}{3528579079844933450} a^{8} - \frac{1771080558841771909}{7057158159689866900} a^{7} + \frac{460149732608884141}{3528579079844933450} a^{6} - \frac{19855949877204461}{201633090276853340} a^{5} + \frac{6477511867635243}{36005908978009525} a^{4} + \frac{41215053476765241}{252041362846066675} a^{3} - \frac{2449666564210007}{4966332272828900} a^{2} - \frac{2323185432352631}{28804727182407620} a + \frac{60399171858409}{198653290913156}$
Class group and class number
$C_{2}\times C_{2}\times C_{28}$, which has order $112$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 194089.946384 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-34}) \), 3.1.6664.1 x3, \(\Q(\zeta_{7})^+\), 6.0.6039609856.1, 6.0.123257344.1 x2, 6.0.6039609856.5, 9.3.295940882944.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.123257344.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |