Normalized defining polynomial
\( x^{18} + 60 x^{16} + 1446 x^{14} + 18129 x^{12} + 128115 x^{10} + 518625 x^{8} + 1174125 x^{6} + 1395000 x^{4} + 759375 x^{2} + 140625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2197241394567050880996664896000000=-\,2^{12}\cdot 3^{28}\cdot 5^{6}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{10} - \frac{4}{25} a^{6} - \frac{6}{25} a^{4}$, $\frac{1}{25} a^{11} - \frac{4}{25} a^{7} - \frac{6}{25} a^{5}$, $\frac{1}{750} a^{12} - \frac{1}{50} a^{10} + \frac{7}{250} a^{8} - \frac{107}{250} a^{6} + \frac{1}{50} a^{4} - \frac{1}{10} a^{2} - \frac{1}{2}$, $\frac{1}{750} a^{13} - \frac{1}{50} a^{11} + \frac{7}{250} a^{9} - \frac{107}{250} a^{7} + \frac{1}{50} a^{5} - \frac{1}{10} a^{3} - \frac{1}{2} a$, $\frac{1}{3750} a^{14} - \frac{9}{625} a^{10} - \frac{1}{625} a^{8} + \frac{9}{25} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{2}$, $\frac{1}{7500} a^{15} - \frac{1}{7500} a^{14} - \frac{1}{1500} a^{13} - \frac{43}{2500} a^{11} - \frac{8}{625} a^{10} + \frac{213}{2500} a^{9} - \frac{62}{625} a^{8} - \frac{13}{500} a^{7} - \frac{1}{10} a^{6} - \frac{9}{100} a^{5} + \frac{8}{25} a^{4} + \frac{7}{20} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{368386612500} a^{16} + \frac{5279}{491182150} a^{14} - \frac{1}{1500} a^{13} + \frac{81464921}{368386612500} a^{12} + \frac{1}{100} a^{11} - \frac{704705377}{122795537500} a^{10} - \frac{7}{500} a^{9} - \frac{158126079}{4911821500} a^{8} - \frac{143}{500} a^{7} + \frac{2052770367}{4911821500} a^{6} - \frac{1}{100} a^{5} + \frac{194608789}{982364300} a^{4} - \frac{9}{20} a^{3} + \frac{19498178}{49118215} a^{2} - \frac{1}{4} a - \frac{15708353}{39294572}$, $\frac{1}{368386612500} a^{17} + \frac{5279}{491182150} a^{15} - \frac{1}{7500} a^{14} + \frac{81464921}{368386612500} a^{13} - \frac{1}{1500} a^{12} - \frac{704705377}{122795537500} a^{11} - \frac{7}{2500} a^{10} - \frac{158126079}{4911821500} a^{9} + \frac{217}{2500} a^{8} + \frac{2052770367}{4911821500} a^{7} - \frac{193}{500} a^{6} + \frac{194608789}{982364300} a^{5} - \frac{49}{100} a^{4} + \frac{19498178}{49118215} a^{3} - \frac{9}{20} a^{2} - \frac{15708353}{39294572} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{234}$, which has order $3744$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 664139.073753 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 48 conjugacy class representatives for t18n367 |
| Character table for t18n367 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.321.1, 9.9.1953114230889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.12.19.43 | $x^{12} + 3 x^{10} - 3 x^{9} - 3 x^{8} - 3 x^{6} + 3 x^{3} + 3$ | $12$ | $1$ | $19$ | $D_4 \times C_3$ | $[2]_{4}^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |