Normalized defining polynomial
\( x^{18} - 9 x^{17} + 90 x^{16} - 516 x^{15} + 2934 x^{14} - 12222 x^{13} + 49236 x^{12} - 157356 x^{11} + 481707 x^{10} - 1203195 x^{9} + 2874348 x^{8} - 5608044 x^{7} + 10549596 x^{6} - 15746040 x^{5} + 23082102 x^{4} - 24788658 x^{3} + 26705808 x^{2} - 16205778 x + 9888146 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-218731134641449487521369514508288=-\,2^{16}\cdot 3^{32}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{31273064131183213794886194126114170500046818545855} a^{17} + \frac{378178711181396638028216706170053592855711366019}{10424354710394404598295398042038056833348939515285} a^{16} - \frac{1316626548495921406721441556055804836812924535951}{10424354710394404598295398042038056833348939515285} a^{15} + \frac{1075493440950056356975564324252604141484218931916}{31273064131183213794886194126114170500046818545855} a^{14} + \frac{108751580377882693679691947717311351406312241787}{6254612826236642758977238825222834100009363709171} a^{13} - \frac{477409729518379328681386834010665162651704423669}{10424354710394404598295398042038056833348939515285} a^{12} - \frac{690871186670913251987193420298400706953058413242}{10424354710394404598295398042038056833348939515285} a^{11} - \frac{2509299932353376611999687849033444688945062254622}{31273064131183213794886194126114170500046818545855} a^{10} - \frac{192867655381477537885215939996822765857402709560}{6254612826236642758977238825222834100009363709171} a^{9} - \frac{750904840398208827347480620635694266313492768306}{2084870942078880919659079608407611366669787903057} a^{8} + \frac{3601389062491702765162120777789002592905550140493}{31273064131183213794886194126114170500046818545855} a^{7} + \frac{5967317668029473074530864769023584945627949701654}{31273064131183213794886194126114170500046818545855} a^{6} + \frac{273908117239164996311562542843395133900380985662}{6254612826236642758977238825222834100009363709171} a^{5} - \frac{2360737447860493613104340811871260192812200938058}{6254612826236642758977238825222834100009363709171} a^{4} + \frac{4067572587859131156043967901405481620514511196202}{31273064131183213794886194126114170500046818545855} a^{3} - \frac{10351604949384690054484949313846307569287032992181}{31273064131183213794886194126114170500046818545855} a^{2} + \frac{516677713137427679206901252800535008338788231704}{10424354710394404598295398042038056833348939515285} a - \frac{14446318317871206740318348378889220366861413043736}{31273064131183213794886194126114170500046818545855}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 416075792.5032041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.108.1, 6.0.141915888.4, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | $18$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| $3$ | 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ |
| 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |