Normalized defining polynomial
\( x^{18} + 684 x^{16} + 145692 x^{14} + 10824528 x^{12} + 377384688 x^{10} + 6981100992 x^{8} + 70338466944 x^{6} + 363270583296 x^{4} + 755493868800 x^{2} + 40292160000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2173089240515381294985625698929389621300732316614656=-\,2^{27}\cdot 3^{45}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $711.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(2051,·)$, $\chi_{4104}(577,·)$, $\chi_{4104}(1547,·)$, $\chi_{4104}(3217,·)$, $\chi_{4104}(1475,·)$, $\chi_{4104}(2905,·)$, $\chi_{4104}(1753,·)$, $\chi_{4104}(851,·)$, $\chi_{4104}(2651,·)$, $\chi_{4104}(155,·)$, $\chi_{4104}(3505,·)$, $\chi_{4104}(1897,·)$, $\chi_{4104}(299,·)$, $\chi_{4104}(1201,·)$, $\chi_{4104}(3251,·)$, $\chi_{4104}(505,·)$, $\chi_{4104}(2939,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} + \frac{1}{5} a$, $\frac{1}{40} a^{6} + \frac{1}{10} a^{2}$, $\frac{1}{40} a^{7} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{8} + \frac{1}{20} a^{4}$, $\frac{1}{80} a^{9} - \frac{1}{5} a$, $\frac{1}{800} a^{10} + \frac{1}{100} a^{6} + \frac{1}{50} a^{2}$, $\frac{1}{800} a^{11} + \frac{1}{100} a^{7} + \frac{1}{50} a^{3}$, $\frac{1}{8000} a^{12} - \frac{1}{2000} a^{10} - \frac{1}{250} a^{8} - \frac{9}{1000} a^{6} - \frac{17}{250} a^{4} - \frac{7}{250} a^{2} - \frac{1}{5}$, $\frac{1}{8000} a^{13} - \frac{1}{2000} a^{11} - \frac{1}{250} a^{9} - \frac{9}{1000} a^{7} - \frac{9}{500} a^{5} - \frac{7}{250} a^{3}$, $\frac{1}{3280000} a^{14} - \frac{3}{164000} a^{12} + \frac{483}{820000} a^{10} + \frac{473}{82000} a^{8} + \frac{769}{102500} a^{6} - \frac{281}{20500} a^{4} + \frac{681}{51250} a^{2} + \frac{368}{1025}$, $\frac{1}{770800000} a^{15} - \frac{1129}{19270000} a^{13} - \frac{559}{1025000} a^{11} + \frac{6833}{1204375} a^{9} - \frac{317237}{48175000} a^{7} + \frac{23146}{1204375} a^{5} - \frac{622519}{12043750} a^{3} - \frac{57032}{240875} a$, $\frac{1}{135536641794658793395693600000} a^{16} + \frac{1314745156783057746019}{13553664179465879339569360000} a^{14} + \frac{7381075833486005499489}{720939584014142518062200000} a^{12} + \frac{932872757277725058371103}{3388416044866469834892340000} a^{10} - \frac{1506234100873151040161107}{529440007010385911701928125} a^{8} + \frac{2453926216385606261339301}{211776002804154364680771250} a^{6} - \frac{125012785828090592635434069}{2117760028041543646807712500} a^{4} - \frac{1378828301124647611501303}{21177600280415436468077125} a^{2} + \frac{8772042477611589612439}{18023489600353562951555}$, $\frac{1}{135536641794658793395693600000} a^{17} - \frac{2023382597016113023}{6776832089732939669784680000} a^{15} + \frac{62207287029952801754663}{2117760028041543646807712500} a^{13} - \frac{122404214523908143341471}{1694208022433234917446170000} a^{11} - \frac{7252178810713092249447337}{8471040112166174587230850000} a^{9} + \frac{99443038349174964545921}{211776002804154364680771250} a^{7} - \frac{43203726934778444701668569}{2117760028041543646807712500} a^{5} - \frac{1027062535802625146285832}{21177600280415436468077125} a^{3} + \frac{37661171144786020386702}{847104011216617458723085} a$
Class group and class number
$C_{2}\times C_{14851834524}$, which has order $29703669048$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5772307958.489205 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-114}) \), 3.3.29241.2, 6.0.24953372987904.2, 9.9.532962204162830310969.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{18}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||