Normalized defining polynomial
\( x^{18} + 684 x^{16} + 145692 x^{14} + 11366256 x^{12} + 426862512 x^{10} + 8467405632 x^{8} + 88486683264 x^{6} + 444387949056 x^{4} + 829422602496 x^{2} + 188728521216 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2173089240515381294985625698929389621300732316614656=-\,2^{27}\cdot 3^{45}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $711.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(2051,·)$, $\chi_{4104}(1537,·)$, $\chi_{4104}(1283,·)$, $\chi_{4104}(2569,·)$, $\chi_{4104}(1547,·)$, $\chi_{4104}(1475,·)$, $\chi_{4104}(529,·)$, $\chi_{4104}(3587,·)$, $\chi_{4104}(1667,·)$, $\chi_{4104}(481,·)$, $\chi_{4104}(1571,·)$, $\chi_{4104}(515,·)$, $\chi_{4104}(385,·)$, $\chi_{4104}(1523,·)$, $\chi_{4104}(577,·)$, $\chi_{4104}(505,·)$, $\chi_{4104}(769,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{1856} a^{12} - \frac{13}{928} a^{10} - \frac{1}{232} a^{8} + \frac{3}{58} a^{6} + \frac{1}{58} a^{4} - \frac{13}{58} a^{2} - \frac{1}{29}$, $\frac{1}{1856} a^{13} - \frac{13}{928} a^{11} - \frac{1}{232} a^{9} + \frac{3}{58} a^{7} + \frac{1}{58} a^{5} - \frac{13}{58} a^{3} - \frac{1}{29} a$, $\frac{1}{3712} a^{14} + \frac{3}{928} a^{10} - \frac{7}{232} a^{8} + \frac{13}{232} a^{6} + \frac{13}{116} a^{4} + \frac{2}{29} a^{2} - \frac{13}{29}$, $\frac{1}{9439616} a^{15} - \frac{11}{73747} a^{13} + \frac{548}{73747} a^{11} - \frac{47}{73747} a^{9} - \frac{9073}{589976} a^{7} + \frac{14787}{294988} a^{5} + \frac{33139}{147494} a^{3} - \frac{26772}{73747} a$, $\frac{1}{12571168310142108719287101629594756864} a^{16} + \frac{614416738283595399392912348403201}{6285584155071054359643550814797378432} a^{14} + \frac{753953031172900428846149533617401}{3142792077535527179821775407398689216} a^{12} + \frac{1065961826168705709951516461446755}{196424504845970448738860962962418076} a^{10} + \frac{3830914564121949143287454387451231}{196424504845970448738860962962418076} a^{8} + \frac{4008269164700992462605427079941399}{392849009691940897477721925924836152} a^{6} + \frac{17601849003949749123855169689955593}{196424504845970448738860962962418076} a^{4} + \frac{2518869068056518427957340607278721}{98212252422985224369430481481209038} a^{2} + \frac{4963927173635279906967660857424}{19310313099289269439526244884233}$, $\frac{1}{12571168310142108719287101629594756864} a^{17} - \frac{91958283098777763590791800935}{3142792077535527179821775407398689216} a^{15} - \frac{55748373266263420756054389804231}{3142792077535527179821775407398689216} a^{13} + \frac{22385174813118921069473534529014487}{1571396038767763589910887703699344608} a^{11} + \frac{18615067830618377912445618531279535}{785698019383881794955443851849672304} a^{9} - \frac{7215874049694637192642119211392481}{196424504845970448738860962962418076} a^{7} - \frac{9018832187908911096895918688449839}{98212252422985224369430481481209038} a^{5} + \frac{1228471445782847109532533393738780}{49106126211492612184715240740604519} a^{3} + \frac{7693144106446318495479026487227124}{49106126211492612184715240740604519} a$
Class group and class number
$C_{2}\times C_{791649756}$, which has order $1583299512$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 771793981.9189847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-114}) \), 3.3.29241.2, 6.0.24953372987904.2, 9.9.532962204162830310969.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||