Normalized defining polynomial
\( x^{18} + 11 x^{16} - 18 x^{15} + 68 x^{14} + 70 x^{13} + 533 x^{12} + 1100 x^{11} + 580 x^{10} + 7210 x^{9} + 16613 x^{8} + 59948 x^{7} + 60667 x^{6} + 137522 x^{5} + 142906 x^{4} + 494826 x^{3} + 675168 x^{2} - 1634408 x + 1185076 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-217069718467413515899000762368=-\,2^{12}\cdot 3^{9}\cdot 139^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{581504204017196514770555363948138361666864559012} a^{17} - \frac{12114927448103966622486267225754131350609069402}{145376051004299128692638840987034590416716139753} a^{16} + \frac{12806791227701387063333608664912679903165312545}{145376051004299128692638840987034590416716139753} a^{15} + \frac{18286637474112738550413732297854441745394441523}{581504204017196514770555363948138361666864559012} a^{14} - \frac{61729030415268463260004678194402869581279559677}{581504204017196514770555363948138361666864559012} a^{13} + \frac{7902027085931255944953192355726985216726527026}{145376051004299128692638840987034590416716139753} a^{12} + \frac{22782350551965031715770718381648091742264579468}{145376051004299128692638840987034590416716139753} a^{11} + \frac{4307653472719330234105783586737687214186332465}{581504204017196514770555363948138361666864559012} a^{10} - \frac{61614737650694036752774730976653707008633847149}{581504204017196514770555363948138361666864559012} a^{9} - \frac{26093084511006646703170138173640198445673727564}{145376051004299128692638840987034590416716139753} a^{8} + \frac{1816451956404383146557463769975809731240160947}{290752102008598257385277681974069180833432279506} a^{7} + \frac{40573815504329930341520392424911836193736174011}{581504204017196514770555363948138361666864559012} a^{6} - \frac{41165084385772212166948106257479894606346397127}{145376051004299128692638840987034590416716139753} a^{5} - \frac{19016887323022301754199908153293872889209431201}{290752102008598257385277681974069180833432279506} a^{4} + \frac{125013924598182517154135985253497434169542154139}{290752102008598257385277681974069180833432279506} a^{3} - \frac{31372005877488551336987564290420064076019724581}{145376051004299128692638840987034590416716139753} a^{2} - \frac{26069961191197688776687445836988743582200046237}{145376051004299128692638840987034590416716139753} a + \frac{30712443121840444366831930792867992833320513096}{145376051004299128692638840987034590416716139753}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{89098187975460870611104}{107957197730529933785371458301} a^{17} + \frac{107354931511173656679081}{215914395461059867570742916602} a^{16} - \frac{1617000367406799472857149}{215914395461059867570742916602} a^{15} + \frac{1939101879461298428870325}{215914395461059867570742916602} a^{14} - \frac{8893978148857156263341025}{215914395461059867570742916602} a^{13} - \frac{13810012277400510776668239}{107957197730529933785371458301} a^{12} - \frac{13244465693408543263017709}{107957197730529933785371458301} a^{11} - \frac{240179175628784724910979467}{215914395461059867570742916602} a^{10} - \frac{35919571221702292942087357}{215914395461059867570742916602} a^{9} - \frac{773216720024351424713533754}{107957197730529933785371458301} a^{8} - \frac{1209424028294137411012618987}{107957197730529933785371458301} a^{7} - \frac{8904840087239695559033884499}{215914395461059867570742916602} a^{6} - \frac{10526492263261481024715218185}{215914395461059867570742916602} a^{5} - \frac{30006825664018924686827042731}{215914395461059867570742916602} a^{4} - \frac{48041395390349649234031799145}{215914395461059867570742916602} a^{3} - \frac{15230617268125957204719029568}{107957197730529933785371458301} a^{2} - \frac{133825957177886006278538289386}{107957197730529933785371458301} a + \frac{139260876226920615793108233060}{107957197730529933785371458301} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9350988.404859575 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.139.1, 6.0.8346672.1, 6.0.521667.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $139$ | 139.3.2.2 | $x^{3} + 556$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 139.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 139.6.3.2 | $x^{6} - 19321 x^{2} + 13428095$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 139.6.5.4 | $x^{6} + 556$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |