Normalized defining polynomial
\( x^{18} + 36 x^{16} - 60 x^{15} + 468 x^{14} - 1440 x^{13} + 6276 x^{12} - 11160 x^{11} + 48168 x^{10} - 58400 x^{9} + 171936 x^{8} - 208800 x^{7} + 440208 x^{6} - 303840 x^{5} + 590976 x^{4} + 188640 x^{3} + 451008 x^{2} + 1259712 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-216258353745310739104685841788928=-\,2^{12}\cdot 3^{24}\cdot 83^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{12} a^{6} - \frac{1}{6} a^{3}$, $\frac{1}{12} a^{7} - \frac{1}{6} a^{4}$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{5}$, $\frac{1}{24} a^{9} - \frac{1}{6} a^{3}$, $\frac{1}{24} a^{10} - \frac{1}{6} a^{4}$, $\frac{1}{24} a^{11} - \frac{1}{6} a^{5}$, $\frac{1}{11088} a^{12} + \frac{5}{1848} a^{11} + \frac{1}{616} a^{10} + \frac{109}{5544} a^{9} + \frac{1}{462} a^{8} + \frac{1}{42} a^{7} - \frac{1}{252} a^{6} + \frac{52}{231} a^{5} + \frac{5}{21} a^{4} + \frac{23}{154} a^{3} - \frac{34}{77} a^{2} - \frac{8}{77}$, $\frac{1}{11088} a^{13} + \frac{1}{264} a^{11} + \frac{5}{396} a^{10} - \frac{1}{231} a^{9} - \frac{19}{462} a^{8} + \frac{2}{63} a^{7} + \frac{5}{462} a^{6} + \frac{5}{33} a^{5} - \frac{37}{231} a^{4} - \frac{41}{462} a^{3} + \frac{19}{77} a^{2} - \frac{8}{77} a + \frac{9}{77}$, $\frac{1}{498960} a^{14} + \frac{1}{49896} a^{13} + \frac{1}{41580} a^{12} + \frac{445}{24948} a^{11} + \frac{289}{35640} a^{10} + \frac{1}{594} a^{9} + \frac{53}{1620} a^{8} - \frac{107}{12474} a^{7} + \frac{79}{1980} a^{6} + \frac{25}{462} a^{5} - \frac{1}{5} a^{4} - \frac{23}{99} a^{3} + \frac{971}{3465} a^{2} - \frac{122}{693} a + \frac{8}{35}$, $\frac{1}{76839840} a^{15} - \frac{31}{38419920} a^{14} + \frac{467}{12806640} a^{13} + \frac{127}{9604980} a^{12} + \frac{277199}{19209960} a^{11} - \frac{87341}{6403320} a^{10} + \frac{21631}{19209960} a^{9} - \frac{158303}{4802490} a^{8} - \frac{7214}{266805} a^{7} + \frac{10729}{355740} a^{6} - \frac{18551}{177870} a^{5} - \frac{2426}{38115} a^{4} + \frac{3881}{533610} a^{3} + \frac{6544}{266805} a^{2} - \frac{4}{55} a + \frac{9022}{29645}$, $\frac{1}{3457792800} a^{16} + \frac{1}{691558560} a^{15} + \frac{17}{1728896400} a^{14} + \frac{2389}{69155856} a^{13} + \frac{13}{898128} a^{12} - \frac{321694}{21611205} a^{11} - \frac{15383531}{864448200} a^{10} - \frac{211745}{17288964} a^{9} + \frac{3070238}{108056025} a^{8} - \frac{1699}{152460} a^{7} + \frac{97897}{8004150} a^{6} - \frac{247}{436590} a^{5} + \frac{68435}{480249} a^{4} - \frac{506414}{2401245} a^{3} - \frac{1603823}{12006225} a^{2} + \frac{8626}{29645} a + \frac{50027}{148225}$, $\frac{1}{12100282395584090400} a^{17} + \frac{1579098343}{12100282395584090400} a^{16} - \frac{17716333561}{12100282395584090400} a^{15} + \frac{3860145091631}{6050141197792045200} a^{14} + \frac{3637144225039}{605014119779204520} a^{13} - \frac{926937790153}{60501411977920452} a^{12} + \frac{39082028223367799}{3025070598896022600} a^{11} + \frac{3149607276193307}{275006418081456600} a^{10} - \frac{1519410639384931}{3025070598896022600} a^{9} + \frac{2806261939891589}{108038235674857950} a^{8} - \frac{769813054914997}{42014869429111425} a^{7} + \frac{4376893581799951}{168059477716445700} a^{6} - \frac{131085161448221}{1680594777164457} a^{5} - \frac{4311535838867}{22865235063462} a^{4} + \frac{8638129578570049}{84029738858222850} a^{3} + \frac{19467302827936991}{42014869429111425} a^{2} - \frac{2288423487467162}{4668318825456825} a - \frac{104840327210104}{518702091717425}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{126}$, which has order $1008$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2929141.96377 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 3.1.26892.3 x3, \(\Q(\zeta_{9})^+\), 6.0.60023912112.1, 6.0.741035952.5 x2, 6.0.3751494507.2, 9.3.19447747524288.10 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $83$ | 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |