Normalized defining polynomial
\( x^{18} - 3 x^{17} + x^{16} - x^{15} + 124 x^{14} + 20 x^{13} - 15 x^{12} - 355 x^{11} + 4994 x^{10} + 14123 x^{9} + 44804 x^{8} + 14520 x^{7} + 74956 x^{6} - 52128 x^{5} + 378444 x^{4} + 597223 x^{3} + 2217367 x^{2} + 2753785 x + 3521939 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-216033383169661016512360513671875=-\,5^{9}\cdot 7^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(386,·)$, $\chi_{455}(261,·)$, $\chi_{455}(326,·)$, $\chi_{455}(139,·)$, $\chi_{455}(269,·)$, $\chi_{455}(334,·)$, $\chi_{455}(16,·)$, $\chi_{455}(209,·)$, $\chi_{455}(339,·)$, $\chi_{455}(404,·)$, $\chi_{455}(94,·)$, $\chi_{455}(159,·)$, $\chi_{455}(419,·)$, $\chi_{455}(81,·)$, $\chi_{455}(211,·)$, $\chi_{455}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{6}{13} a^{11} + \frac{2}{13} a^{10} + \frac{1}{13} a^{9} + \frac{4}{13} a^{8} - \frac{3}{13} a^{7} - \frac{5}{13} a^{6} + \frac{2}{13} a^{5} + \frac{5}{13} a^{3} + \frac{6}{13} a^{2} + \frac{2}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{13} + \frac{5}{13} a^{11} - \frac{3}{13} a^{9} - \frac{5}{13} a^{8} + \frac{3}{13} a^{7} - \frac{2}{13} a^{6} - \frac{1}{13} a^{5} + \frac{5}{13} a^{4} - \frac{3}{13} a^{3} - \frac{1}{13} a^{2} + \frac{4}{13} a + \frac{4}{13}$, $\frac{1}{169} a^{14} - \frac{5}{169} a^{13} + \frac{5}{169} a^{12} - \frac{25}{169} a^{11} - \frac{81}{169} a^{10} - \frac{16}{169} a^{9} + \frac{67}{169} a^{8} - \frac{82}{169} a^{7} - \frac{43}{169} a^{6} - \frac{81}{169} a^{5} + \frac{76}{169} a^{4} + \frac{1}{169} a^{3} - \frac{69}{169} a^{2} - \frac{16}{169} a - \frac{7}{169}$, $\frac{1}{169} a^{15} + \frac{6}{169} a^{13} - \frac{76}{169} a^{11} - \frac{83}{169} a^{10} + \frac{6}{13} a^{9} - \frac{46}{169} a^{8} - \frac{37}{169} a^{7} - \frac{10}{169} a^{6} - \frac{17}{169} a^{5} + \frac{4}{169} a^{4} + \frac{27}{169} a^{3} - \frac{49}{169} a^{2} + \frac{17}{169} a + \frac{69}{169}$, $\frac{1}{507} a^{16} - \frac{1}{507} a^{15} + \frac{1}{507} a^{14} - \frac{7}{507} a^{13} + \frac{16}{507} a^{12} + \frac{131}{507} a^{11} - \frac{15}{169} a^{10} - \frac{6}{169} a^{9} - \frac{235}{507} a^{8} + \frac{59}{169} a^{7} - \frac{4}{13} a^{6} - \frac{53}{169} a^{5} - \frac{149}{507} a^{4} - \frac{94}{507} a^{3} - \frac{71}{169} a^{2} - \frac{76}{507} a - \frac{229}{507}$, $\frac{1}{6748202930264749029249080514165770241025544757} a^{17} - \frac{2233316172174133583640192784016851574652371}{6748202930264749029249080514165770241025544757} a^{16} + \frac{6160649735237359419148018056822127690198391}{6748202930264749029249080514165770241025544757} a^{15} + \frac{7017023048136673434671170351014356334242605}{6748202930264749029249080514165770241025544757} a^{14} + \frac{8031878243196017998658275303927098974888033}{519092533097288386865313885705059249309657289} a^{13} - \frac{223986862347734409922893245150483142783618488}{6748202930264749029249080514165770241025544757} a^{12} - \frac{3013511902803694264103197806355966268152507553}{6748202930264749029249080514165770241025544757} a^{11} + \frac{628224936295707149641392416175711777066628250}{2249400976754916343083026838055256747008514919} a^{10} - \frac{2279186410004624885766630345425731323662284477}{6748202930264749029249080514165770241025544757} a^{9} - \frac{61670009393752141276422945724989615685597049}{519092533097288386865313885705059249309657289} a^{8} - \frac{262170073499459879343945488718151601549977297}{749800325584972114361008946018418915669504973} a^{7} - \frac{3134889009694333790842469268974765491752380}{2249400976754916343083026838055256747008514919} a^{6} - \frac{218018576459007501882876489396435692723370185}{519092533097288386865313885705059249309657289} a^{5} + \frac{558099425845067882129706653164060407765934573}{6748202930264749029249080514165770241025544757} a^{4} - \frac{1929984801974298100833754254729948571326320}{39930194853637568220408760438850711485358253} a^{3} + \frac{202634797415796277654601915604401448660146366}{519092533097288386865313885705059249309657289} a^{2} - \frac{771248610316899120356178657754830459551275948}{2249400976754916343083026838055256747008514919} a - \frac{3275334092729137421349306502445008585990482986}{6748202930264749029249080514165770241025544757}$
Class group and class number
$C_{6}\times C_{6}\times C_{78}$, which has order $2808$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 3.3.8281.1, 3.3.8281.2, 3.3.169.1, \(\Q(\zeta_{7})^+\), 6.0.60003090875.1, 6.0.60003090875.2, 6.0.1224552875.2, 6.0.2100875.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |